Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain.
Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
Plant Sci. 2024 Aug;345:112118. doi: 10.1016/j.plantsci.2024.112118. Epub 2024 May 20.
Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. Aiming to expand the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae (spider mite) infestation. Despite mite infesting both legumes, leaf damage infringed by this feeder was reduced in lima bean. Comparative transcriptome analyses revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, although alterations in P. lunatus were significantly more pronounced. Specific differences in amino acid homeostasis and key genes associated with the cyanogenic pathway were observed in these species, as well as the upregulation of the mandelonitrile lyase gene (PlMNL1) following T. urticae feeding. Concomitantly, the PIMNL1 activity increased. Lima bean plants also displayed an induction of β-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to our understanding of the legume-herbivore interactions and underscore the potential role of cyanogenesis in the elaboration of specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.
了解植物和草食动物之间的复杂相互作用对于提高作物抗性至关重要。本研究旨在扩展氰苷生物合成在植物防御中的作用,我们调查了产氰的菜豆(利马豆)和非产氰的普通菜豆(菜豆)对二斑叶螨(叶螨)侵害的反应。尽管两种豆科植物都受到螨虫的侵害,但利马豆叶片受到的取食损伤减少。比较转录组分析表明,两种豆科植物在受到侵害后都表现出大量的代谢和转录变化,尽管利马豆的变化更为显著。在这两个物种中观察到氨基酸动态平衡的特定差异以及与氰苷途径相关的关键基因,并且在 T. urticae 取食后,杏仁腈裂解酶基因(PlMNL1)上调。同时,PlMNL1 活性增加。利马豆植物还表现出β-氰基丙氨酸合酶(PlCYSC1)的诱导,这是氰化物解毒的关键酶,表明存在内部调节机制来管理其防御反应的毒性。这些发现有助于我们理解豆科植物-草食动物相互作用,并强调了氰苷生物合成在特定防御反应中的潜在作用,即使在同一属中,这可能反映了不同物种之间独特的进化适应或不同的代谢能力。