WEISS, UCL, London, UK.
Department of Radiology, University of Cambridge, Cambridge, UK.
Int J Comput Assist Radiol Surg. 2024 Jul;19(7):1391-1398. doi: 10.1007/s11548-024-03178-z. Epub 2024 May 22.
In robotic-assisted minimally invasive surgery, surgeons often use intra-operative ultrasound to visualise endophytic structures and localise resection margins. This must be performed by a highly skilled surgeon. Automating this subtask may reduce the cognitive load for the surgeon and improve patient outcomes.
We demonstrate vision-based shape sensing of the pneumatically attachable flexible (PAF) rail by using colour-dependent image segmentation. The shape-sensing framework is evaluated on known curves ranging from to mm, replicating curvatures in a human kidney. The shape sensing is then used to inform path planning of a collaborative robot arm paired with an intra-operative ultrasound probe. We execute 15 autonomous ultrasound scans of a tumour-embedded kidney phantom and retrieve viable ultrasound images, as well as seven freehand ultrasound scans for comparison.
The vision-based sensor is shown to have comparable sensing accuracy with FBGS-based systems. We find the RMSE of the vision-based shape sensing of the PAF rail compared with ground truth to be mm. The ultrasound images acquired by the robot and by the human were evaluated by two independent clinicians. The median score across all criteria for both readers was '3-good' for human and '4-very good' for robot.
We have proposed a framework for autonomous intra-operative US scanning using vision-based shape sensing to inform path planning. Ultrasound images were evaluated by clinicians for sharpness of image, clarity of structures visible, and contrast of solid and fluid areas. Clinicians evaluated that robot-acquired images were superior to human-acquired images in all metrics. Future work will translate the framework to a da Vinci surgical robot.
在机器人辅助微创手术中,外科医生通常使用术中超声来可视化内生结构并定位切除边界。这必须由技术精湛的外科医生来完成。自动化完成此子任务可以降低外科医生的认知负担并改善患者的治疗效果。
我们通过使用依赖颜色的图像分割来演示对气动可附接柔性(PAF)轨道的基于视觉的形状感知。在从 至 毫米的已知曲线上评估形状感知框架,复制人体肾脏中的曲率。然后,使用形状感知来为协作机器人臂和术中超声探头的路径规划提供信息。我们对肿瘤嵌入的肾模拟体执行了 15 次自主超声扫描,并检索到了可行的超声图像,以及进行了 7 次用于比较的徒手超声扫描。
基于视觉的传感器被证明与基于 FBGS 的系统具有相当的感知精度。我们发现与地面实况相比,PAF 轨道的基于视觉的形状感知的 RMSE 为 毫米。机器人和人类获取的超声图像由两位独立的临床医生进行评估。两位读者对所有标准的中位数评分为人类为“3-良好”,机器人为“4-非常好”。
我们提出了一种使用基于视觉的形状感知来告知路径规划的自主术中 US 扫描框架。临床医生根据图像清晰度、可见结构的清晰度以及实体和液体区域的对比度评估超声图像。临床医生评估机器人获取的图像在所有指标上都优于人类获取的图像。未来的工作将把该框架转化为达芬奇手术机器人。