Suppr超能文献

一种语义约束下的前列腺超声图像双向分割方法。

A bi-directional segmentation method for prostate ultrasound images under semantic constraints.

作者信息

Li Zexiang, Du Wei, Shi Yongtao, Li Wei, Gao Chao

机构信息

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, Hubei, 443002, China.

College of Computer and Information Technology, China Three Gorges University, Yichang, Hubei, 443002, China.

出版信息

Sci Rep. 2024 May 22;14(1):11701. doi: 10.1038/s41598-024-61238-5.

Abstract

Due to the lack of sufficient labeled data for the prostate and the extensive and complex semantic information in ultrasound images, accurately and quickly segmenting the prostate in transrectal ultrasound (TRUS) images remains a challenging task. In this context, this paper proposes a solution for TRUS image segmentation using an end-to-end bidirectional semantic constraint method, namely the BiSeC model. The experimental results show that compared with classic or popular deep learning methods, this method has better segmentation performance, with the Dice Similarity Coefficient (DSC) of 96.74% and the Intersection over Union (IoU) of 93.71%. Our model achieves a good balance between actual boundaries and noise areas, reducing costs while ensuring the accuracy and speed of segmentation.

摘要

由于前列腺缺乏足够的标注数据,且超声图像中的语义信息广泛而复杂,在经直肠超声(TRUS)图像中准确、快速地分割前列腺仍然是一项具有挑战性的任务。在此背景下,本文提出了一种使用端到端双向语义约束方法的TRUS图像分割解决方案,即BiSeC模型。实验结果表明,与经典或流行的深度学习方法相比,该方法具有更好的分割性能,骰子相似系数(DSC)为96.74%,交并比(IoU)为93.71%。我们的模型在实际边界和噪声区域之间实现了良好的平衡,在确保分割准确性和速度的同时降低了成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e3c/11634890/ed2055203399/41598_2024_61238_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验