Department of Biomedical Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Department of Urology, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
Med Image Anal. 2022 May;78:102418. doi: 10.1016/j.media.2022.102418. Epub 2022 Mar 17.
Automatic and accurate prostate ultrasound segmentation is a long-standing and challenging problem due to the severe noise and ambiguous/missing prostate boundaries. In this work, we propose a novel polar transform network (PTN) to handle this problem from a fundamentally new perspective, where the prostate is represented and segmented in the polar coordinate space rather than the original image grid space. This new representation gives a prostate volume, especially the most challenging apex and base sub-areas, much denser samples than the background and thus facilitate the learning of discriminative features for accurate prostate segmentation. Moreover, in the polar representation, the prostate surface can be efficiently parameterized using a 2D surface radius map with respect to a centroid coordinate, which allows the proposed PTN to obtain superior accuracy compared with its counterparts using convolutional neural networks while having significantly fewer (18%∼41%) trainable parameters. We also equip our PTN with a novel strategy of centroid perturbed test-time augmentation (CPTTA), which is designed to further improve the segmentation accuracy and quantitatively assess the model uncertainty at the same time. The uncertainty estimation function provides valuable feedback to clinicians when manual modifications or approvals are required for the segmentation, substantially improving the clinical significance of our work. We conduct a three-fold cross validation on a clinical dataset consisting of 315 transrectal ultrasound (TRUS) images to comprehensively evaluate the performance of the proposed method. The experimental results show that our proposed PTN with CPTTA outperforms the state-of-the-art methods with statistical significance on most of the metrics while exhibiting a much smaller model size. Source code of the proposed PTN is released at https://github.com/DIAL-RPI/PTN.
自动且准确的前列腺超声分割是一个长期存在且具有挑战性的问题,因为存在严重的噪声以及前列腺边界模糊/缺失的问题。在这项工作中,我们提出了一种新颖的极坐标变换网络(PTN),从全新的角度来处理这个问题,即使用极坐标空间来表示和分割前列腺,而不是使用原始的图像网格空间。这种新的表示方式为前列腺体积,尤其是最具挑战性的尖部和底部区域,提供了比背景更密集的样本,从而有利于学习用于准确分割前列腺的判别特征。此外,在极坐标表示中,前列腺表面可以使用相对于质心坐标的 2D 表面半径图进行有效地参数化,这使得所提出的 PTN 能够获得比使用卷积神经网络的同类方法更高的精度,同时具有明显更少的(18%∼41%)可训练参数。我们还为我们的 PTN 配备了一种新颖的质心扰动测试时间增强(CPTTA)策略,该策略旨在进一步提高分割精度,并同时定量评估模型不确定性。不确定性估计函数为临床医生提供了有价值的反馈,当需要手动修改或批准分割时,这大大提高了我们工作的临床意义。我们在一个由 315 个经直肠超声(TRUS)图像组成的临床数据集上进行了三折交叉验证,以全面评估所提出方法的性能。实验结果表明,我们提出的具有 CPTTA 的 PTN 在大多数指标上均优于最先进的方法,具有统计学意义,同时模型规模更小。所提出的 PTN 的源代码发布在 https://github.com/DIAL-RPI/PTN。