Suppr超能文献

不同的μ阿片受体簇触发了芬太尼的正性和负性强化作用。

Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement.

机构信息

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

INSERM U1114, University of Strasbourg Institute for Advanced Study, Strasbourg, France.

出版信息

Nature. 2024 Jun;630(8015):141-148. doi: 10.1038/s41586-024-07440-x. Epub 2024 May 22.

Abstract

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs. Among the opioid receptors, µ-opioid receptors have a key role, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.

摘要

芬太尼是一种强效止痛药,能引起欣快和正性强化。芬太尼也会导致依赖,其特征为令人不快的戒断综合征,从而产生负性强化(即个体重新服用药物以避免戒断)。正性和负性强化维持阿片类药物的消费,这导致四分之一的使用者成瘾,是所有成瘾性药物中最大的比例。在阿片受体中,μ-阿片受体起着关键作用,但最终导致成瘾的回路适应的诱导部位仍不清楚。在这里,我们给小鼠注射芬太尼,以急性抑制腹侧被盖区(VTA)中表达γ-氨基丁酸的神经元,导致多巴胺神经元去抑制,最终增加伏隔核中的多巴胺。VTA 中的 μ-阿片受体的敲低消除了多巴胺的瞬变和正性强化,但戒断反应仍未改变。我们鉴定出在伏隔核中表达 μ-阿片受体的神经元,在戒断期间其活动增强。中央杏仁核(CeA)中 μ-阿片受体的敲低消除了令人不快的症状,表明它们介导负性强化。因此,光遗传学刺激引起位置厌恶,并且小鼠很容易学会按压杠杆以暂停表达 μ-阿片受体的 CeA 神经元的光遗传学刺激。我们的研究分别解析了触发 VTA 和 CeA 中正性和负性强化的神经元群体。我们阐述了电路组织,以开发减少芬太尼成瘾和促进康复的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8f2/11153127/f05ff63feb97/41586_2024_7440_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验