文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用青香蕉皮提取物生物合成及表征银纳米颗粒:评估其抗菌性能和电学性能。

Biosynthesis and characterizations of silver nanoparticles by using green banana peel extract: Evaluation of their antibacterial and electrical performances.

作者信息

Ohiduzzaman Md, Khan M N I, Khan K A, Paul Bithi

机构信息

Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh.

Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.

出版信息

Heliyon. 2024 May 11;10(10):e31140. doi: 10.1016/j.heliyon.2024.e31140. eCollection 2024 May 30.


DOI:10.1016/j.heliyon.2024.e31140
PMID:38778959
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11109888/
Abstract

Biosynthesized silver nanoparticles (Ag NPs) hold tremendous promise in nano-bioscience, with applications spanning engineering, science, and industry. This study delves into their fabrication process, crystallographic characteristics, and nanostructures. Employing green banana peel extract (GBPE), Ag NPs were synthesized. Various analytical techniques, such as UV-Vis absorption spectrophotometry (UV), X-ray diffraction (XRD), Gas chromatography-mass spectrometry (GC-MS), Field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM) elucidate their attributes. UV-visible analysis reveals a 413 nm absorption band due to surface plasmon resonance. The Ag NPs exhibit a face-centered cubic structure with an average crystallite size of 45.87 nm. Lattice parameters and dislocation density are also determined. When tested against harmful bacteria, such as and , advanced microscopy reveals a median size of particles of 55.12 nm and demonstrates their antibacterial characteristics. These environmentally benign Ag NPs also improve the efficiency of bio-electrochemical cells (BECs), opening the door to large-scale manufacturing at a reasonable cost and broadening the range of possible uses.

摘要

生物合成银纳米颗粒(Ag NPs)在纳米生物科学领域有着巨大的前景,其应用涵盖工程、科学和工业等领域。本研究深入探讨了它们的制备过程、晶体学特征和纳米结构。利用青香蕉皮提取物(GBPE)合成了Ag NPs。通过各种分析技术,如紫外可见吸收分光光度法(UV)、X射线衍射(XRD)、气相色谱-质谱联用(GC-MS)、场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱(FTIR)和透射电子显微镜(TEM)来阐明其特性。紫外可见分析显示,由于表面等离子体共振,出现了一个413 nm的吸收带。Ag NPs呈现面心立方结构,平均晶粒尺寸为45.87 nm。还测定了晶格参数和位错密度。当针对有害细菌(如 和 )进行测试时,先进的显微镜显示颗粒的中位尺寸为55.12 nm,并证明了它们的抗菌特性。这些对环境无害的Ag NPs还提高了生物电化学电池(BECs)的效率,为以合理成本进行大规模制造打开了大门,并拓宽了可能的应用范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/d49b3542913e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/651ea69f522d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/881674aea5cf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/6637baf55085/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/67e50cee04d1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/ed5500db036b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/7622c9843dc4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/b0a2ba335a17/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/22d4bc76c7b2/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/d49b3542913e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/651ea69f522d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/881674aea5cf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/6637baf55085/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/67e50cee04d1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/ed5500db036b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/7622c9843dc4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/b0a2ba335a17/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/22d4bc76c7b2/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3c/11109888/d49b3542913e/gr9.jpg

相似文献

[1]
Biosynthesis and characterizations of silver nanoparticles by using green banana peel extract: Evaluation of their antibacterial and electrical performances.

Heliyon. 2024-5-11

[2]
Crystallographic structure, antibacterial effect, and catalytic activities of fig extract mediated silver nanoparticles.

Heliyon. 2024-6-4

[3]
Antibacterial Activity of the Green Synthesized Plasmonic Silver Nanoparticles with Crystalline Structure against Gram-Positive and Gram-Negative Bacteria.

Nanomaterials (Basel). 2023-4-10

[4]
Phytofabrication of Silver/Silver Chloride Nanoparticles Using Aqueous Leaf Extract of : Characterization and Antibacterial Potential.

Molecules. 2019-11-30

[5]
Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques.

ACS Omega. 2023-7-28

[6]
Eco-friendly synthesis of Ag-NPs using Endostemon viscosus (Lamiaceae): Antibacterial, antioxidant, larvicidal, photocatalytic dye degradation activity and toxicity in zebrafish embryos.

Environ Res. 2023-2-1

[7]
Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation.

Heliyon. 2024-2-1

[8]
Biosynthesized Silver Nanoparticles by Aqueous Stem Extract of and Screening of Their Biomedical Activity.

Front Chem. 2020-8-19

[9]
Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia inermis Against Common Pathogens from Urinary Tract Infection.

Appl Biochem Biotechnol. 2024-1

[10]
Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.

J Photochem Photobiol B. 2016-1

本文引用的文献

[1]
Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation.

Heliyon. 2024-2-1

[2]
Green synthesis of silver nanoparticles by using Allium sativum extract and evaluation of their electrical activities in bio-electrochemical cell.

Nanotechnology. 2023-12-15

[3]
Cassava and banana starch modified with maleic anhydride-poly (ethylene glycol) methyl ether (Ma-mPEG): A comparative study of their physicochemical properties as coatings.

Int J Biol Macromol. 2022-4-30

[4]
Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis.

Int J Biol Macromol. 2021-9-30

[5]
Synthesis and characterization of Ag@AgCl-reinforced cellulose composites with enhanced antibacterial and photocatalytic degradation properties.

Sci Rep. 2021-2-9

[6]
scolicidal activity of synthesised silver nanoparticles from aqueous plant extract against .

Biotechnol Rep (Amst). 2020-10-22

[7]
Inhibitory Effect of Condensed Tannins from Banana Pulp on Cholesterol Esterase and Mechanisms of Interaction.

J Agric Food Chem. 2019-12-10

[8]
The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles.

Chem Rev. 2019-3-28

[9]
In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity.

Mater Sci Eng C Mater Biol Appl. 2018-4-17

[10]
Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies.

J Photochem Photobiol B. 2017-3-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索