Suppr超能文献

利用正弦三角q-球面模糊粗糙聚合算子进行群体决策及其在数字转型中的作用。

Utilizing sine trigonometric q-spherical fuzzy rough aggregation operators for group decision-making and their role in digital transformation.

作者信息

Azim Ahmad Bin, Ali Asad, Khan Abdul Samad, Awwad Fuad A, Ismail Emad A A, Ali Sumbal

机构信息

Department of Mathematics and Statistics, Hazara University Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan.

Research Center for Computational Science, School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, 710129, China.

出版信息

Heliyon. 2024 May 9;10(10):e30758. doi: 10.1016/j.heliyon.2024.e30758. eCollection 2024 May 30.

Abstract

q-spherical fuzzy rough set (q-SFRS) is also one of the fundamental concepts for addressing more uncertainties in decision problems than the existing structures of fuzzy sets, and thus its implementation was more substantial. The well-known sine trigonometric function maintains the periodicity and symmetry of the origin in nature and thus satisfies the expectations of the experts over the multi-parameters. Taking this feature and the significance of the q-SFRSs into consideration, the main objective of the article is to describe some reliable sine trigonometric laws for SFSs. Associated with these laws, we develop new average and geometric aggregation operators to aggregate the q-spherical fuzzy rough numbers. Then, we presented a group decision-making strategy to address the multi-attribute group decision-making problem using the developed aggregation operators. To verify the value of the defined operators, a MAGDM strategy is provided along with applications for selecting a Cloud Service Provider and a Digital Transformation Vendor for digital transformation. Moreover, a comparative study is also performed to present the effectiveness of the developed approach.

摘要

q-球面模糊粗糙集(q-SFRS)也是用于解决决策问题中比现有模糊集结构更多不确定性的基本概念之一,因此其实现更为重要。著名的正弦三角函数在本质上保持了原点的周期性和对称性,从而满足了专家对多参数的期望。考虑到这一特性以及q-SFRS的重要性,本文的主要目的是描述一些适用于球面模糊集(SFS)的可靠正弦三角定律。与这些定律相关联,我们开发了新的均值和几何聚合算子来聚合q-球面模糊粗糙数。然后,我们提出了一种群体决策策略,使用所开发的聚合算子来解决多属性群体决策问题。为了验证所定义算子的价值,提供了一种多属性群体决策(MAGDM)策略以及用于选择云服务提供商和数字转型供应商进行数字转型的应用。此外,还进行了比较研究以展示所开发方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/244f/11109737/261853c8e998/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验