Suppr超能文献

过去十年肿瘤放射组学中人工智能发展的研究:文献计量与可视化分析

Research on the developments of artificial intelligence in radiomics for oncology over the past decade: a bibliometric and visualized analysis.

作者信息

Zhang Pengyu, Wei Lili, Nie Zonglong, Hu Pengcheng, Zheng Jilu, Lv Ji, Cui Tao, Liu Chunlei, Lan Xiaopeng

机构信息

Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.

School of Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.

出版信息

Discov Oncol. 2025 May 14;16(1):763. doi: 10.1007/s12672-025-02590-4.

Abstract

OBJECTIVE

To assess the publications' bibliographic features and look into how the advancement of artificial intelligence (AI) and its subfields in radiomics has affected the growth of oncology.

METHODS

The researchers conducted a search in the Web of Science (WoS) for scientific publications in cancer pertaining to AI and radiomics, published in English from 1 January 2015 to 31 December 2024.The research included a scientometric methodology and comprehensive data analysis utilising scientific visualization tools, including the Bibliometrix R software package, VOSviewer, and CiteSpace. Bibliometric techniques utilised were co-authorship, co-citation, co-occurrence, citation burst, and performance Analysis.

RESULTS

The final study encompassed 4,127 publications authored by 5,026 individuals and published across 597 journals. China (2087;50.57%) and USA (850;20.6%) were the two most productive countries. The authors with the highest publication counts were Tian Jie (60) and Cuocolo Renato (30). Fudan University (169;4.09%) and Sun Yat-sen University (162;3.93%) were the most active institutions. The foremost journals were Frontiers in Oncology and Cancer. The predominant author keywords were radiomics, artificial intelligence, and oncology research.

CONCLUSION

Investigations into the integration of AI with radiomics in oncology remain nascent, with numerous studies concentrating on biology, diagnosis, treatment, and cancer risk evaluation.

摘要

目的

评估相关出版物的文献特征,并探究人工智能(AI)及其在放射组学中的子领域的发展如何影响肿瘤学的发展。

方法

研究人员在科学网(WoS)中搜索了2015年1月1日至2024年12月31日以英文发表的与AI和放射组学相关的癌症科学出版物。该研究采用了科学计量学方法和综合数据分析,利用了科学可视化工具,包括Bibliometrix R软件包、VOSviewer和CiteSpace。所采用的文献计量技术包括共同作者、共被引、共现、引文爆发和绩效分析。

结果

最终研究涵盖了由5026人撰写并发表在597种期刊上的4127篇出版物。中国(2087篇;50.57%)和美国(850篇;20.6%)是两个产出最多的国家。发表论文数量最多的作者是田捷(60篇)和库奥科洛·雷纳托(30篇)。复旦大学(169篇;4.09%)和中山大学(162篇;3.93%)是最活跃的机构。最重要的期刊是《肿瘤前沿》和《癌症》。主要的作者关键词是放射组学、人工智能和肿瘤学研究。

结论

关于AI与放射组学在肿瘤学中整合的研究仍处于初期阶段,众多研究集中在生物学、诊断、治疗和癌症风险评估方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b294/12078899/cf5d912aa2ae/12672_2025_2590_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验