Suppr超能文献

连续血糖监测中前额叶皮层活动的探索性见解:来自便携式可穿戴功能近红外光谱系统的发现

Exploratory insights into prefrontal cortex activity in continuous glucose monitoring: findings from a portable wearable functional near-infrared spectroscopy system.

作者信息

Chen Jiafa, Yu Kaiwei, Zhuang Songlin, Zhang Dawei

机构信息

Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.

出版信息

Front Neurosci. 2024 May 8;18:1342744. doi: 10.3389/fnins.2024.1342744. eCollection 2024.

Abstract

The escalating global prevalence of diabetes highlights an urgent need for advancements in continuous glucose monitoring (CGM) technologies that are non-invasive, accurate, and user-friendly. Here, we introduce a groundbreaking portable wearable functional near-infrared spectroscopy (fNIRS) system designed to monitor glucose levels by assessing prefrontal cortex (PFC) activity. Our study delineates the development and application of this novel fNIRS system, emphasizing its potential to revolutionize diabetes management by providing a non-invasive, real-time monitoring solution. Fifteen healthy university students participated in a controlled study, where we monitored their PFC activity and blood glucose levels under fasting and glucose-loaded conditions. Our findings reveal a significant correlation between PFC activity, as measured by our fNIRS system, and blood glucose levels, suggesting the feasibility of fNIRS technology for CGM. The portable nature of our system overcomes the mobility limitations of traditional setups, enabling continuous, real-time monitoring in everyday settings. We identified 10 critical features related to blood glucose levels from extensive fNIRS data and successfully correlated PFC function with blood glucose levels by constructing predictive models. Results show a positive association between fNIRS data and blood glucose levels, with the PFC exhibiting a clear response to blood glucose. Furthermore, the improved regressive rule principal component analysis (PCA) method outperforms traditional PCA in model prediction. We propose a model validation approach based on leave-one-out cross-validation, demonstrating the unique advantages of K-nearest neighbor (KNN) models. Comparative analysis with existing CGM methods reveals that our paper's KNN model exhibits lower RMSE and MARD at 0.11 and 8.96%, respectively, and the fNIRS data were highly significant positive correlation with actual blood glucose levels ( = 0.995, < 0.000). This study provides valuable insights into the relationship between metabolic states and brain activity, laying the foundation for innovative CGM solutions. Our portable wearable fNIRS system represents a significant advancement in effective diabetes management, offering a promising alternative to current technologies and paving the way for future advancements in health monitoring and personalized medicine.

摘要

全球糖尿病患病率不断攀升,凸显了对无创、准确且用户友好的连续血糖监测(CGM)技术取得进展的迫切需求。在此,我们介绍一种开创性的便携式可穿戴功能近红外光谱(fNIRS)系统,该系统旨在通过评估前额叶皮层(PFC)活动来监测血糖水平。我们的研究阐述了这种新型fNIRS系统的开发与应用,强调了其通过提供无创、实时监测解决方案来变革糖尿病管理的潜力。15名健康大学生参与了一项对照研究,我们在空腹和葡萄糖负荷条件下监测了他们的PFC活动和血糖水平。我们的研究结果显示,通过我们的fNIRS系统测量的PFC活动与血糖水平之间存在显著相关性,这表明fNIRS技术用于CGM具有可行性。我们系统的便携性克服了传统装置的移动性限制,能够在日常环境中进行连续、实时监测。我们从大量fNIRS数据中识别出10个与血糖水平相关的关键特征,并通过构建预测模型成功地将PFC功能与血糖水平关联起来。结果显示fNIRS数据与血糖水平呈正相关,PFC对血糖表现出明显反应。此外,改进的回归规则主成分分析(PCA)方法在模型预测方面优于传统PCA。我们提出了一种基于留一法交叉验证的模型验证方法,展示了K近邻(KNN)模型的独特优势。与现有CGM方法的比较分析表明,我们论文中的KNN模型的均方根误差(RMSE)和平均绝对相对偏差(MARD)分别较低,为0.11和8.96%,并且fNIRS数据与实际血糖水平高度显著正相关( = 0.995, < 0.000)。这项研究为代谢状态与大脑活动之间的关系提供了有价值的见解,为创新的CGM解决方案奠定了基础。我们的便携式可穿戴fNIRS系统代表了有效糖尿病管理方面的重大进展,为当前技术提供了有前景的替代方案,并为健康监测和个性化医疗的未来发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4744/11110533/c95f06360411/fnins-18-1342744-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验