Suppr超能文献

OpenSAFELY:一个专为可重复研究设计的分析电子健康记录的平台。

OpenSAFELY: A platform for analysing electronic health records designed for reproducible research.

机构信息

Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.

TPP, TPP House, Leeds, UK.

出版信息

Pharmacoepidemiol Drug Saf. 2024 Jun;33(6):e5815. doi: 10.1002/pds.5815.

Abstract

Electronic health records (EHRs) and other administrative health data are increasingly used in research to generate evidence on the effectiveness, safety, and utilisation of medical products and services, and to inform public health guidance and policy. Reproducibility is a fundamental step for research credibility and promotes trust in evidence generated from EHRs. At present, ensuring research using EHRs is reproducible can be challenging for researchers. Research software platforms can provide technical solutions to enhance the reproducibility of research conducted using EHRs. In response to the COVID-19 pandemic, we developed the secure, transparent, analytic open-source software platform OpenSAFELY designed with reproducible research in mind. OpenSAFELY mitigates common barriers to reproducible research by: standardising key workflows around data preparation; removing barriers to code-sharing in secure analysis environments; enforcing public sharing of programming code and codelists; ensuring the same computational environment is used everywhere; integrating new and existing tools that encourage and enable the use of reproducible working practices; and providing an audit trail for all code that is run against the real data to increase transparency. This paper describes OpenSAFELY's reproducibility-by-design approach in detail.

摘要

电子健康记录 (EHR) 和其他管理健康数据越来越多地被用于研究,以生成关于医疗产品和服务的有效性、安全性和利用的证据,并为公共卫生指导和政策提供信息。可重复性是研究可信度的基本步骤,可增强对从 EHR 生成的证据的信任。目前,对于研究人员来说,确保使用 EHR 进行的研究具有可重复性可能具有挑战性。研究软件平台可以提供技术解决方案,以增强使用 EHR 进行的研究的可重复性。为了应对 COVID-19 大流行,我们开发了安全、透明、分析性的开源软件平台 OpenSAFELY,该平台旨在实现可重复性研究。OpenSAFELY 通过以下方式减轻了可重复性研究的常见障碍:围绕数据准备标准化关键工作流程;在安全分析环境中消除代码共享的障碍;强制共享编程代码和代码列表;确保在任何地方都使用相同的计算环境;集成新的和现有的工具,鼓励和支持可重复工作实践的使用;并为针对实际数据运行的所有代码提供审计跟踪,以提高透明度。本文详细描述了 OpenSAFELY 的设计可重复性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65e5/7616137/c7cc1567f9b8/EMS197224-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验