Ziegler Ann-Kathrin, Jensen Johan Kjellberg, Jiménez-Gallardo Lucía, Rissler Jenny, Gudmundsson Anders, Nilsson Jan-Åke, Isaksson Caroline
Department of Biology, Lund University, Lund, Sweden.
Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden.
Front Physiol. 2024 May 9;15:1391806. doi: 10.3389/fphys.2024.1391806. eCollection 2024.
Anthropogenic changes to the environment expose wildlife to many pollutants. Among these, tropospheric ozone is of global concern and a highly potent pro-oxidant. In addition, human activities include several other implications for wildlife, e.g., changed food availability and changed distribution of pathogens in cities. These co-occurring habitat changes may interact, thereby modulating the physiological responses and costs related to anthropogenic change. For instance, many food items associated with humans (e.g., food waste and feeders for wild birds) contain relatively more ω6-than ω3-polyunsaturated fatty acids (PUFAs). Metabolites derived from ω6-PUFAs can enhance inflammation and oxidative stress towards a stimulus, whereas the opposite response is linked to ω3-derived metabolites. Hence, we hypothesized that differential intake of ω6-and ω3-PUFAs modulates the oxidative stress state of birds and thereby affects the responses towards pro-oxidants. To test this, we manipulated dietary ω6:ω3 ratios and ozone levels in a full-factorial experiment using captive zebra finches (). Additionally, we simulated an infection, thereby also triggering the immune system's adaptive pro-oxidant release (i.e., oxidative burst), by injecting lipopolysaccharide. Under normal air conditions, the ω3-diet birds had a lower antioxidant ratio (GSH/GSSG ratio) compared to the ω6-diet birds. When exposed to ozone, however, the diet effect disappeared. Instead, ozone exposure overall reduced the total concentration of the key antioxidant glutathione (tGSH). Moreover, the birds on the ω6-rich diet had an overall higher antioxidant capacity (OXY) compared to birds fed a ω3-rich diet. Interestingly, only the immune challenge increased oxidative damage, suggesting the oxidative burst of the immune system overrides the other pro-oxidative processes, including diet. Taken together, our results show that ozone, dietary PUFAs, and infection all affect the redox-system, but in different ways, suggesting that the underlying responses are decoupled despite that they all increase pro-oxidant exposure or generation. Despite lack of apparent cumulative effect in the independent biomarkers, the combined single effects could together reduce overall cellular functioning and efficiency over time in wild birds exposed to pathogens, ozone, and anthropogenic food sources.
人为环境变化使野生动物接触到许多污染物。其中,对流层臭氧受到全球关注,是一种强效的促氧化剂。此外,人类活动对野生动物还有其他一些影响,例如城市中食物供应的变化和病原体分布的改变。这些同时发生的栖息地变化可能相互作用,从而调节与人为变化相关的生理反应和代价。例如,许多与人类相关的食物(如食物残渣和野生鸟类喂食器中的食物)含有的ω6多不饱和脂肪酸(PUFA)比ω3多不饱和脂肪酸相对更多。源自ω6-PUFA的代谢物可增强对刺激的炎症反应和氧化应激,而相反的反应则与源自ω3的代谢物有关。因此,我们假设ω6和ω3-PUFA的不同摄入量会调节鸟类的氧化应激状态,从而影响对促氧化剂的反应。为了验证这一点,我们在一项全因子实验中,使用圈养的斑胸草雀,操纵饮食中的ω6:ω3比例和臭氧水平。此外,我们通过注射脂多糖模拟感染,从而也触发免疫系统适应性促氧化剂的释放(即氧化爆发)。在正常空气条件下,与食用ω6饮食的鸟类相比,食用ω3饮食的鸟类抗氧化剂比例(谷胱甘肽/氧化型谷胱甘肽比例)较低。然而,当暴露于臭氧时,饮食效应消失。相反,臭氧暴露总体上降低了关键抗氧化剂谷胱甘肽(总谷胱甘肽)的总浓度。此外,与食用富含ω3饮食的鸟类相比,食用富含ω6饮食的鸟类总体抗氧化能力(OXY)更高。有趣的是,只有免疫挑战增加了氧化损伤,这表明免疫系统的氧化爆发超过了其他促氧化过程,包括饮食。综上所述,我们的结果表明,臭氧、饮食中的PUFA和感染都会影响氧化还原系统,但方式不同,这表明尽管它们都会增加促氧化剂暴露或生成,但潜在反应是解耦开的。尽管在独立生物标志物中缺乏明显的累积效应,但随着时间的推移,这些单一效应的综合作用可能会共同降低暴露于病原体、臭氧和人为食物来源的野生鸟类的整体细胞功能和效率。