Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
Chembiochem. 2024 Aug 1;25(15):e202400225. doi: 10.1002/cbic.202400225. Epub 2024 Jul 5.
The determination of k and k values through kinetic analysis is crucial for understanding the intricacies of aptamer-target binding interactions. By employing kinetic ITC, we systematically analyzed a range of ITC data of various aptamers. Upon plotting their k and k values as a function of their K values, a notable trend emerged. Across a range of K values spanning from 28 nM to 864 μM, the k value decreased from 2×10 M s to 96 M s, whereas the k value increased from 1.03×10 s to 0.012 s. Thus, both k and k contributed to the change of K in the same direction, although the range of k change was larger. Since experiments are often run at close to the K value, this concentration effect also played an important role in the observed binding kinetics. The effect of these kinetic parameters on two common sensing mechanisms, including aptamer beacons and strand-displacement assays, are discussed. This work has provided the kinetic values of small molecule binding aptamers and offered insights into aptamer-based biosensors.
通过动力学分析确定 k 和 k 值对于理解适体-靶标结合相互作用的复杂性至关重要。通过使用动力学 ITC,我们系统地分析了一系列不同适体的 ITC 数据。当将 k 和 k 值作为其 K 值的函数作图时,出现了一个显著的趋势。在 28 nM 到 864 μM 的一系列 K 值范围内,k 值从 2×10 M s 降低到 96 M s,而 k 值从 1.03×10 s 增加到 0.012 s。因此,尽管 k 值的变化范围更大,但 k 和 k 都导致 K 值朝着相同的方向变化。由于实验通常在接近 K 值的条件下进行,因此这种浓度效应也在观察到的结合动力学中起着重要作用。讨论了这些动力学参数对两种常见传感机制(适体信标和链置换分析)的影响。这项工作提供了小分子结合适体的动力学值,并为基于适体的生物传感器提供了深入的了解。