Suppr超能文献

熵的相对论根源。

Relativistic Roots of -Entropy.

作者信息

Kaniadakis Giorgio

机构信息

Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

出版信息

Entropy (Basel). 2024 May 7;26(5):406. doi: 10.3390/e26050406.

Abstract

The axiomatic structure of the κ-statistcal theory is proven. In addition to the first three standard Khinchin-Shannon axioms of continuity, maximality, and expansibility, two further axioms are identified, namely the self-duality axiom and the scaling axiom. It is shown that both the κ-entropy and its special limiting case, the classical Boltzmann-Gibbs-Shannon entropy, follow unambiguously from the above new set of five axioms. It has been emphasized that the statistical theory that can be built from κ-entropy has a validity that goes beyond physics and can be used to treat physical, natural, or artificial complex systems. The physical origin of the self-duality and scaling axioms has been investigated and traced back to the first principles of relativistic physics, i.e., the Galileo relativity principle and the Einstein principle of the constancy of the speed of light. It has been shown that the κ-formalism, which emerges from the κ-entropy, can treat both simple (few-body) and complex (statistical) systems in a unified way. Relativistic statistical mechanics based on κ-entropy is shown that preserves the main features of classical statistical mechanics (kinetic theory, molecular chaos hypothesis, maximum entropy principle, thermodynamic stability, H-theorem, and Lesche stability). The answers that the κ-statistical theory gives to the more-than-a-century-old open problems of relativistic physics, such as how thermodynamic quantities like temperature and entropy vary with the speed of the reference frame, have been emphasized.

摘要

κ统计理论的公理结构得到了证明。除了连续性、极大性和可扩展性这前三个标准的欣钦 - 香农公理外,还确定了另外两个公理,即自对偶公理和标度公理。结果表明,κ熵及其特殊极限情况,即经典的玻尔兹曼 - 吉布斯 - 香农熵,都明确地遵循上述新的五条公理。有人强调,基于κ熵构建的统计理论具有超越物理学的有效性,可用于处理物理、自然或人工复杂系统。自对偶公理和标度公理的物理起源已被研究并追溯到相对论物理学的第一原理,即伽利略相对性原理和爱因斯坦光速不变原理。结果表明,从κ熵中产生的κ形式主义能够以统一的方式处理简单(少体)和复杂(统计)系统。基于κ熵的相对论统计力学表明,它保留了经典统计力学的主要特征(动力学理论、分子混沌假设、最大熵原理、热力学稳定性、H定理和莱舍稳定性)。有人强调了κ统计理论对相对论物理学中一个多世纪以来的开放性问题所给出的答案,比如像温度和熵这样的热力学量如何随参考系的速度变化。

相似文献

1
Relativistic Roots of -Entropy.
Entropy (Basel). 2024 May 7;26(5):406. doi: 10.3390/e26050406.
2
Statistical mechanics in the context of special relativity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 2):056125. doi: 10.1103/PhysRevE.66.056125. Epub 2002 Nov 25.
3
Statistical mechanics in the context of special relativity. II.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036108. doi: 10.1103/PhysRevE.72.036108. Epub 2005 Sep 9.
4
Two-parameter deformations of logarithm, exponential, and entropy: a consistent framework for generalized statistical mechanics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046128. doi: 10.1103/PhysRevE.71.046128. Epub 2005 Apr 20.
5
Generalized entropies and logarithms and their duality relations.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19151-4. doi: 10.1073/pnas.1216885109. Epub 2012 Nov 5.
6
A Brief Review of Generalized Entropies.
Entropy (Basel). 2018 Oct 23;20(11):813. doi: 10.3390/e20110813.
7
How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):6905-10. doi: 10.1073/pnas.1406071111. Epub 2014 Apr 29.
8
Relativity, nonextensivity, and extended power law distributions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):057101. doi: 10.1103/PhysRevE.72.057101. Epub 2005 Nov 11.
9
The theory of thermodynamic relativity.
Sci Rep. 2024 Sep 30;14(1):22641. doi: 10.1038/s41598-024-72779-0.
10
Beyond Boltzmann-Gibbs-Shannon in Physics and Elsewhere.
Entropy (Basel). 2019 Jul 15;21(7):696. doi: 10.3390/e21070696.

引用本文的文献

1
Quantum -Entropy: A Quantum Computational Approach.
Entropy (Basel). 2025 Apr 29;27(5):482. doi: 10.3390/e27050482.
2
Twenty Years of Kaniadakis Entropy: Current Trends and Future Perspectives.
Entropy (Basel). 2025 Feb 27;27(3):247. doi: 10.3390/e27030247.
3
Applications of Entropy in Data Analysis and Machine Learning: A Review.
Entropy (Basel). 2024 Dec 23;26(12):1126. doi: 10.3390/e26121126.
4
The Thermodynamics of the Van Der Waals Black Hole Within Kaniadakis Entropy.
Entropy (Basel). 2024 Nov 27;26(12):1027. doi: 10.3390/e26121027.

本文引用的文献

1
Multi-Additivity in Kaniadakis Entropy.
Entropy (Basel). 2024 Jan 17;26(1):77. doi: 10.3390/e26010077.
2
Nonlinear Fokker-Planck Equations, H-Theorem and Generalized Entropy of a Composed System.
Entropy (Basel). 2023 Sep 20;25(9):1357. doi: 10.3390/e25091357.
3
The Kaniadakis Distribution for the Analysis of Income and Wealth Data.
Entropy (Basel). 2023 Jul 30;25(8):1141. doi: 10.3390/e25081141.
4
Kaniadakis's Information Geometry of Compositional Data.
Entropy (Basel). 2023 Jul 24;25(7):1107. doi: 10.3390/e25071107.
6
Doppler Broadening of Neutron Cross-Sections Using Kaniadakis Entropy.
Entropy (Basel). 2022 Oct 9;24(10):1437. doi: 10.3390/e24101437.
9
Generalized statistics: Applications to data inverse problems with outlier-resistance.
PLoS One. 2023 Mar 30;18(3):e0282578. doi: 10.1371/journal.pone.0282578. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验