Suppr超能文献

一种基于卡尼亚达基斯-高斯分布的图空间最优传输方法,用于解决与波传播相关的反问题。

A Graph-Space Optimal Transport Approach Based on Kaniadakis -Gaussian Distribution for Inverse Problems Related to Wave Propagation.

作者信息

da Silva Sérgio Luiz E F, de Araújo João M, de la Barra Erick, Corso Gilberto

机构信息

Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.

Geoscience Institute, Fluminense Federal University, Niterói 24210-346, RJ, Brazil.

出版信息

Entropy (Basel). 2023 Jun 28;25(7):990. doi: 10.3390/e25070990.

Abstract

Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objective function. However, the FWI is strenuously dependent on a robust objective function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum likelihood procedure and include it within a well-posed version of the original OT formulation, known as the Kantorovich-Rubinstein metric. We represent the data in the graph space to satisfy the probability axioms required by the Kantorovich-Rubinstein framework. We call our proposal the κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems. They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function convergence, resulting in higher-resolution models than classical techniques, especially when κ=0.6.

摘要

以数据为中心的反问题是一个从间接测量中推断物理属性的过程。全波形反演(FWI)是一个非线性反问题,它试图通过将波动方程解与观测数据进行比较,优化一个目标函数来获得定量物理模型。然而,FWI严重依赖于一个稳健的目标函数,特别是在处理数据集中的周跳问题和非高斯噪声时。在这项工作中,我们提出了一个基于卡尼亚达基斯κ-高斯分布和最优传输(OT)理论的目标函数,以减轻导致周跳的非高斯噪声影响和相位模糊问题。我们使用概率最大似然过程构建κ-目标函数,并将其纳入原始OT公式的一个适定版本中,即康德罗维奇-鲁宾斯坦度量。我们在图空间中表示数据,以满足康德罗维奇-鲁宾斯坦框架所需的概率公理。我们将我们的提议称为κ-图空间最优传输FWI(κ-GSOT-FWI)。结果表明,κ-GSOT-FWI是一种有效规避非高斯噪声影响和周跳问题的方法。结果还表明,卡尼亚达基斯κ统计显著改善了FWI目标函数的收敛性,从而得到比传统技术更高分辨率的模型,特别是当κ = 0.6时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58e/10378674/97c80aa8df21/entropy-25-00990-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验