Suppr超能文献

变速旋转条件下风力发电机组行星齿轮微弱故障检测的熵辅助网格阶次调制分析

Entropy-Aided Meshing-Order Modulation Analysis for Wind Turbine Planetary Gear Weak Fault Detection under Variable Rotational Speed.

作者信息

Zhi Shaodan, Wu Hengshan, Shen Haikuo, Wang Tianyang, Fu Hongfei

机构信息

Electronic and Control Engineering, School of Mechanical, Beijing Jiaotong University, Beijing 100091, China.

Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

Entropy (Basel). 2024 May 8;26(5):409. doi: 10.3390/e26050409.

Abstract

As one of the most vital energy conversation systems, the safe operation of wind turbines is very important; however, weak fault and time-varying speed may challenge the conventional monitoring strategies. Thus, an entropy-aided meshing-order modulation method is proposed for detecting the optimal frequency band, which contains the weak fault-related information. Specifically, the variable rotational frequency trend is first identified and extracted based on the time-frequency representation of the raw signal by constructing a novel scaling-basis local reassigning chirplet transform (SLRCT). A new entropy-aided meshing-order modulation (EMOM) indicator is then constructed to locate the most sensitive modulation frequency area according to the extracted fine speed trend with the help of order tracking technique. Finally, the raw vibration signal is bandpass filtered via the corresponding optimal frequency band with the highest EMOM indicator. The order components resulting from the weak fault can be highlighted to accomplish weak fault detection. The effectiveness of the proposed EMOM analysis-based method has been tested using the experimental data of three different gear fault types of different fault levels from a planetary test rig.

摘要

作为最重要的能量转换系统之一,风力涡轮机的安全运行非常重要;然而,微弱故障和时变速度可能对传统监测策略构成挑战。因此,提出了一种基于熵的啮合阶次调制方法来检测包含微弱故障相关信息的最优频带。具体而言,首先通过构建一种新颖的尺度基局部重分配小线调频波变换(SLRCT),基于原始信号的时频表示识别并提取可变旋转频率趋势。然后借助阶次跟踪技术,根据提取的精细速度趋势构建一个新的基于熵的啮合阶次调制(EMOM)指标,以定位最敏感的调制频率区域。最后,通过具有最高EMOM指标的相应最优频带对原始振动信号进行带通滤波。由微弱故障产生的阶次分量可以被突出显示,以完成微弱故障检测。利用行星试验台三种不同故障等级、不同故障类型的实验数据,对所提出的基于EMOM分析的方法的有效性进行了测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2625/11119115/eff5d919778e/entropy-26-00409-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验