Suppr超能文献

广义复合多尺度莱姆尔-齐夫复杂度在风力发电机组齿轮箱故障识别中的应用

Application of Generalized Composite Multiscale Lempel-Ziv Complexity in Identifying Wind Turbine Gearbox Faults.

作者信息

Yan Xiaoan, She Daoming, Xu Yadong, Jia Minping

机构信息

School of Mechatronics Engineering, Nanjing Forestry University, Nanjing 210037, China.

School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Entropy (Basel). 2021 Oct 20;23(11):1372. doi: 10.3390/e23111372.

Abstract

Wind turbine gearboxes operate in harsh environments; therefore, the resulting gear vibration signal has characteristics of strong nonlinearity, is non-stationary, and has a low signal-to-noise ratio, which indicates that it is difficult to identify wind turbine gearbox faults effectively by the traditional methods. To solve this problem, this paper proposes a new fault diagnosis method for wind turbine gearboxes based on generalized composite multiscale Lempel-Ziv complexity (GCMLZC). Within the proposed method, an effective technique named multiscale morphological-hat convolution operator (MHCO) is firstly presented to remove the noise interference information of the original gear vibration signal. Then, the GCMLZC of the filtered signal was calculated to extract gear fault features. Finally, the extracted fault features were input into softmax classifier for automatically identifying different health conditions of wind turbine gearboxes. The effectiveness of the proposed method was validated by the experimental and engineering data analysis. The results of the analysis indicate that the proposed method can identify accurately different gear health conditions. Moreover, the identification accuracy of the proposed method is higher than that of traditional multiscale Lempel-Ziv complexity (MLZC) and several representative multiscale entropies (e.g., multiscale dispersion entropy (MDE), multiscale permutation entropy (MPE) and multiscale sample entropy (MSE)).

摘要

风力发电机组齿轮箱在恶劣环境下运行;因此,由此产生的齿轮振动信号具有强非线性、非平稳性且信噪比低的特点,这表明采用传统方法难以有效识别风力发电机组齿轮箱故障。为解决这一问题,本文提出一种基于广义复合多尺度莱姆尔 - 齐夫复杂度(GCMLZC)的风力发电机组齿轮箱故障诊断新方法。在所提方法中,首先提出一种名为多尺度形态学帽状卷积算子(MHCO)的有效技术,以去除原始齿轮振动信号的噪声干扰信息。然后,计算滤波后信号的GCMLZC以提取齿轮故障特征。最后,将提取的故障特征输入到softmax分类器中,以自动识别风力发电机组齿轮箱的不同健康状态。通过实验和工程数据分析验证了所提方法的有效性。分析结果表明,所提方法能够准确识别齿轮的不同健康状态。此外,所提方法的识别准确率高于传统的多尺度莱姆尔 - 齐夫复杂度(MLZC)以及几种具有代表性的多尺度熵(如多尺度离散熵(MDE)、多尺度排列熵(MPE)和多尺度样本熵(MSE))。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e92/8625407/69dac50c2b0c/entropy-23-01372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验