Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Cells. 2024 May 10;13(10):820. doi: 10.3390/cells13100820.
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
这篇综述探讨了创新的共培养系统的需求,该系统将肠神经系统(ENS)与肠道类器官整合在一起。通过这些技术取得的突破将为胃肠道(GI)疾病建模和治疗策略的变革时代铺平道路。这篇综述是对本期刊登的配套方案论文的介绍。该方案概述了从小肠类器官中分离和共培养肌间和黏膜下神经元。本综述概述了肠道类器官培养领域,为有效应用方案奠定了坚实的基础。值得注意的是,ENS 神经元的数量超过了脊髓中的神经元数量。ENS 被称为“第二大脑”,在 GI 功能中发挥着关键作用,包括运动、血流和分泌。ENS 组织成肌间和黏膜下神经丛。这些神经丛中存在多种神经元亚型。由于其靠近肠道肌肉组织及其细胞类型的复杂性,研究 ENS 存在方法上的复杂性。多种方法,如原代细胞培养、三维(3D)神经球和诱导 ENS 细胞,为 ENS 的多方面功能提供了不同的见解。ENS 与肠道上皮、肌肉层和免疫系统之间存在动态相互作用,影响上皮生理学、运动、免疫反应和微生物组。神经递质,包括乙酰胆碱(ACh)、血清素(5-HT)和血管活性肠肽(VIP),在这些复杂的相互作用中发挥着关键作用。了解这些动态变化至关重要,因为 ENS 与从神经病变到 GI 疾病和神经退行性疾病等各种疾病有关。类器官技术的出现为研究 ENS 在小肠和大肠复杂环境中的相互作用提供了前所未有的机会。本文强调了迫切需要标准化方案和先进技术来揭示 ENS 的复杂性及其与肠道生态系统的动态关系。从这些努力中获得的见解有可能彻底改变 GI 疾病建模和治疗模式。