Suppr超能文献

基于强化学习的变后掠翼飞机轨迹跟踪控制

Trajectory Tracking Control of Variable Sweep Aircraft Based on Reinforcement Learning.

作者信息

Cao Rui, Lu Kelin

机构信息

The College of Information Engineering and Artificial Intelligence, YangZhou University, Yangzhou 225009, China.

School of Automation, Southeast University, Nanjing 210096, China.

出版信息

Biomimetics (Basel). 2024 Apr 27;9(5):263. doi: 10.3390/biomimetics9050263.

Abstract

An incremental deep deterministic policy gradient (IDDPG) algorithm is devised for the trajectory tracking control of a four-wing variable sweep (FWVS) aircraft with uncertainty. The IDDPG algorithm employs the line-of-sight (LOS) method for path tracking, formulates a reward function based on position and attitude errors, and integrates long short-term memory (LSTM) units into IDDPG algorithm to enhance its adaptability to environmental changes during flight. Finally, environmental disturbance factors are introduced in simulation to validate the designed controller's ability to track climbing trajectories of morphing aircraft in the presence of uncertainty.

摘要

针对具有不确定性的四翼变后掠(FWVS)飞机的轨迹跟踪控制,设计了一种增量深度确定性策略梯度(IDDPG)算法。IDDPG算法采用视线(LOS)方法进行路径跟踪,基于位置和姿态误差制定奖励函数,并将长短期记忆(LSTM)单元集成到IDDPG算法中,以增强其在飞行过程中对环境变化的适应性。最后,在仿真中引入环境干扰因素,以验证所设计的控制器在存在不确定性的情况下跟踪变形飞机爬升轨迹的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2089/11118740/f5a5bfc14457/biomimetics-09-00263-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验