State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
Int J Biol Macromol. 2024 Jun;271(Pt 1):132494. doi: 10.1016/j.ijbiomac.2024.132494. Epub 2024 May 23.
The synthesis of liquid metal-infused hydrogels, typically constituted by polyacrylamide networks crosslinked through covalent bonds, often encounters a conundrum: they exhibit restricted extensibility and a diminished capacity for self-repair, owing to the inherently irreversible nature of the covalent linkages. This study introduces a hydrophobically associated hydrogel embedding gallium (Ga)-droplets, realized through the in situ free radical copolymerization of hydrophobic hexadecyl methacrylate (HMA) and hydrophilic acrylamide (AM) in a milieu containing xanthan gum (XG) and PEDOT:PSS, which co-stabilizes the Ga-droplets. The Ga-droplets, synergistically functioning as conductive agents alongside PEDOT:PSS, also expedite the hydrogel's formation. The resultant XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel is distinguished by its remarkable extensibility (2950 %), exceptional toughness (3.28 MJ/m), superior adherence to hydrophobic, smooth substrates, and an innate ability for hydrophobic-driven self-healing. As a strain sensing medium, this hydrogel-based sensor exhibits heightened sensitivity (gauge factor = 12.66), low detection threshold (0.1 %), and robust durability (>500 cycles). Furthermore, the inclusion of glycerol endows the XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel with anti-freezing properties without compromising its mechanical integrity and sensing acumen. This sensor adeptly captures a spectrum of human movements, from the nuanced radial pulse to extensive joint articulations. This research heralds a novel approach for fabricating multifaceted PAM-based hydrogels with toughness and superior sensing capabilities.
金属液注入水凝胶的合成,通常由通过共价键交联的聚丙烯酰胺网络构成,由于共价键的固有不可逆性质,经常会遇到一个难题:它们的延展性有限,自我修复能力降低。本研究介绍了一种疏水缔合水凝胶,其中嵌入了镓(Ga)液滴,通过在含有黄原胶(XG)和PEDOT:PSS 的环境中,原位自由基聚合疏水性十六烷基甲基丙烯酸酯(HMA)和亲水性丙烯酰胺(AM)来实现,PEDOT:PSS 共同稳定 Ga 液滴。Ga 液滴与 PEDOT:PSS 协同作为导电剂,也加速了水凝胶的形成。所得的 XG/PEDOT:PSS-Ga-P(AM-HMA)水凝胶具有显著的拉伸性(2950%)、非凡的韧性(3.28 MJ/m)、出色的疏水性、光滑基底的附着力以及固有的疏水驱动自修复能力。作为应变传感介质,这种基于水凝胶的传感器具有较高的灵敏度(应变系数=12.66)、低检测阈值(0.1%)和强大的耐用性(>500 次循环)。此外,甘油的加入使 XG/PEDOT:PSS-Ga-P(AM-HMA)水凝胶具有抗冻性能,而不会损害其机械完整性和传感敏锐度。该传感器能够灵敏地捕捉从细微的桡动脉脉搏到广泛的关节运动等各种人体运动。这项研究为制造具有韧性和卓越传感能力的多功能 PAM 基水凝胶开辟了一条新途径。