Suppr超能文献

精氨酸代琥珀酸脱水酶同工酶在三叶木通中策略性地上调苯丙氨酸生物合成。

Arogenate dehydratase isoforms strategically deregulate phenylalanine biosynthesis in Akebia trifoliata.

机构信息

Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 611130, China.

Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China.

出版信息

Int J Biol Macromol. 2024 Jun;271(Pt 1):132587. doi: 10.1016/j.ijbiomac.2024.132587. Epub 2024 May 22.

Abstract

Arogenate dehydratase (ADT) is key for phenylalanine (Phe) biosynthesis in plants. To examine ADT components and function in Akebia trifoliata, a representative of Ranunculaceae, we first identified eight ADTs (AktADT1-8, encoding sequences varying from 1032 to 1962 bp) in the A. trifoliata reference genome and five proteins (AktADT1, AktADT4, AktADT7, AktADT8 and AktADT8s) with moonlighting prephenate dehydratase (PDT) activity and Km values varying from 0.43 to 2.17 mM. Structurally, two basic residue combinations (Val314/Ala317 and Ala314/Val317) in the PAC domain are essential for the moonlighting PDT activity of ADTs. Functionally, AktADT4 and AktADT8 successfully restored the wild-type phenotype of pha2, a knockout mutant of Saccharomyces cerevisiae. In addition, AktADTs are ubiquitously expressed, but their expression levels are tissue specific, and the half maximal inhibitory concentration (IC) of Phe for AktADTs ranged from 49.81 to 331.17 μM. Both AktADT4 and AktADT8 and AktADT8s localized to chloroplast stromules and the cytosol, respectively, while the remaining AktADTs localized to the chloroplast stroma. These findings suggest that various strategies exist for regulating Phe biosynthesis in A. trifoliata. This provides a reasonable explanation for the high Phe content and insights for further genetic improvement of the edible fruits of A. trifoliata.

摘要

醛缩酶(ADT)是植物苯丙氨酸(Phe)生物合成的关键酶。为了研究 Akebia trifoliata(毛茛科的代表植物)中 ADT 的组成和功能,我们首先在 A. trifoliata 参考基因组中鉴定了 8 种 ADT(AktADT1-8,编码序列长度从 1032 到 1962bp)和 5 种具有预苯酸脱水酶(PDT)活性和 Km 值范围从 0.43 到 2.17mM 的 moonlighting 蛋白(AktADT1、AktADT4、AktADT7、AktADT8 和 AktADT8s)。结构上,PAC 结构域中的两个碱性残基组合(Val314/Ala317 和 Ala314/Val317)对于 ADT 的 moonlighting PDT 活性是必需的。功能上,AktADT4 和 AktADT8 成功地恢复了 Saccharomyces cerevisiae 敲除突变体 pha2 的野生型表型。此外,AktADTs 广泛表达,但表达水平具有组织特异性,AktADTs 对 Phe 的半抑制浓度(IC)范围为 49.81 到 331.17μM。AktADT4 和 AktADT8 以及 AktADT8s 分别定位于叶绿体基质小管和细胞质中,而其余的 AktADTs 则定位于叶绿体基质中。这些发现表明,A. trifoliata 中存在多种调节 Phe 生物合成的策略。这为 A. trifoliata 食用果实中高 Phe 含量提供了合理的解释,并为进一步的遗传改良提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验