Krivopalov Sergey, Yushkov Boris, Sarapultsev Alexey
Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia.
GAUZ SO Institute for Medical Cell Technologies, 620026 Ekaterinburg, Russia.
Biomedicines. 2024 Apr 24;12(5):946. doi: 10.3390/biomedicines12050946.
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, prone to audiogenic seizures, received implants of wireless EEG transmitters that target specific seizure-related brain regions. These regions included the inferior colliculus (IC), pontine reticular nucleus, oral part (PnO), ventrolateral periaqueductal gray (VLPAG), dorsal area of the secondary auditory cortex (AuD), and motor cortex (M1), facilitating seizure observation without movement constraints. Our findings indicate that targeted neural intervention via electrode implantation significantly reduced convulsive seizures in approximately half of the subjects, suggesting therapeutic potential. Furthermore, the amplitude of brain activity in the IC, PnO, and AuD upon audiogenic stimulus onset significantly influenced seizure severity and nature, highlighting these areas as pivotal for epileptic propagation. Severe cases exhibited dual waves of seizure generalization, indicative of intricate neural network interactions. Distinctive interplay between specific brain regions, disrupted during convulsive activity, suggests neural circuit reconfiguration in response to escalating seizure intensity. These discoveries challenge conventional methodologies, opening avenues for novel approaches in epilepsy research and therapeutic interventions.
本研究调查了克鲁申斯基-莫洛迪纳(KM)大鼠的听源性癫痫,质疑传统脑电图技术在动物受限期间捕捉癫痫发作的有效性。使用一种允许无限制活动的无线脑电图系统,我们的目的是收集生态有效数据。九只易患听源性癫痫的雄性KM大鼠接受了针对特定癫痫相关脑区的无线脑电图发射器植入。这些区域包括下丘(IC)、脑桥网状核嘴侧部(PnO)、腹外侧导水管周围灰质(VLPAG)、次级听觉皮层背侧区(AuD)和运动皮层(M1),便于在无运动限制的情况下观察癫痫发作。我们的研究结果表明,通过电极植入进行有针对性的神经干预在大约一半的受试者中显著减少了惊厥性癫痫发作,显示出治疗潜力。此外,听源性刺激开始时IC、PnO和AuD中的脑电活动幅度显著影响癫痫发作的严重程度和性质,突出了这些区域对癫痫传播的关键作用。严重病例表现出癫痫发作泛化的双波,表明神经网络存在复杂的相互作用。在惊厥活动期间特定脑区之间独特的相互作用被破坏,提示神经回路会随着癫痫发作强度的增加而重新配置。这些发现挑战了传统方法,为癫痫研究和治疗干预的新方法开辟了道路。