Suppr超能文献

基于集成生物信息学方法探究乌司奴单抗治疗溃疡性结肠炎的疗效预测。

Insights into Therapeutic Response Prediction for Ustekinumab in Ulcerative Colitis Using an Ensemble Bioinformatics Approach.

机构信息

Gastroenterology Department, Evangelismos-Polykliniki General Hospital, 115 27 Athens, Greece.

Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 115 27 Athens, Greece.

出版信息

Int J Mol Sci. 2024 May 18;25(10):5532. doi: 10.3390/ijms25105532.

Abstract

INTRODUCTION

Optimizing treatment with biological agents is an ideal goal for patients with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise, but predicting treatment response remains a challenge. We aimed to identify prognostic markers of response to ustekinumab in patients with active UC, utilizing information from their mucosal transcriptome.

METHODS

We performed a prospective observational study of 36 UC patients initiating treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression networks were performed to identify potential biomarkers. Additionally, machine learning (ML) models were employed to predict treatment response based on gene expression data.

RESULTS

Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and IL23R were downregulated in non-responders compared to responders. The co-expression analysis revealed distinct patterns between responders and non-responders, with key genes like BCL6 and CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6 genes.

CONCLUSIONS

Our study identifies potential biomarkers associated with ustekinumab response in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes. Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable insights for personalized treatment strategies and highlights avenues for further research to enhance therapeutic outcomes for patients with UC.

摘要

简介

优化溃疡性结肠炎(UC)患者的治疗是一个理想的目标。最近的数据表明,应答者和无应答者之间的黏膜炎症模式和血清细胞因子谱不同。靶向白细胞介素(IL)-12和IL-23 的 p40 亚单位的单克隆抗体乌司奴单抗显示出良好的效果,但预测治疗反应仍然是一个挑战。我们旨在利用患者的黏膜转录组数据,确定对乌司奴单抗有反应的 UC 患者的预后标志物。

方法

我们对 36 例开始接受乌司奴单抗治疗的 UC 患者进行了前瞻性观察研究。在治疗前采集结肠黏膜活检标本,用于使用 84 个炎症基因的微阵列进行基因表达分析。对共表达网络进行差异基因表达分析(DGEA)、相关性分析和网络中心性分析,以确定潜在的生物标志物。此外,还使用机器学习(ML)模型根据基因表达数据预测治疗反应。

结果

与应答者相比,无应答者中 7 个基因(包括 BCL6、CXCL5 和 FASLG)显著上调,而 IL23A 和 IL23R 下调。共表达分析显示应答者和无应答者之间存在明显的差异模式,应答者中关键基因如 BCL6 和 CRP 突出,无应答者中 CCL11 和 CCL22 突出。ML 算法显示出很高的预测能力,强调了 IL23R、IL23A 和 BCL6 基因的重要性。

结论

我们的研究确定了与 UC 患者乌司奴单抗反应相关的潜在生物标志物,揭示了其潜在机制和治疗结果的可变性。整合转录组方法,包括基因表达分析和 ML,为个性化治疗策略提供了有价值的见解,并强调了进一步研究的途径,以提高 UC 患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b847/11122545/d53d33b40ab8/ijms-25-05532-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验