Suppr超能文献

评估 ECSCR 在溃疡性结肠炎诊断和药物疗效评估中的意义。

Evaluating the significance of ECSCR in the diagnosis of ulcerative colitis and drug efficacy assessment.

机构信息

Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.

Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, China.

出版信息

Front Immunol. 2024 Aug 7;15:1426875. doi: 10.3389/fimmu.2024.1426875. eCollection 2024.

Abstract

BACKGROUND

The main challenge in diagnosing and treating ulcerative colitis (UC) has prompted this study to discover useful biomarkers and understand the underlying molecular mechanisms.

METHODS

In this study, transcriptomic data from intestinal mucosal biopsies underwent Robust Rank Aggregation (RRA) analysis to identify differential genes. These genes intersected with UC key genes from Weighted Gene Co-expression Network Analysis (WGCNA). Machine learning identified UC signature genes, aiding predictive model development. Validation involved external data for diagnostic, progression, and drug efficacy assessment, along with ELISA testing of clinical serum samples.

RESULTS

RRA integrative analysis identified 251 up-regulated and 211 down-regulated DEGs intersecting with key UC genes in WGCNA, yielding 212 key DEGs. Subsequently, five UC signature biomarkers were identified by machine learning based on the key DEGs-THY1, SLC6A14, ECSCR, FAP, and GPR109B. A logistic regression model incorporating these five genes was constructed. The AUC values for the model set and internal validation data were 0.995 and 0.959, respectively. Mechanistically, activation of the IL-17 signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway in UC was indicated by KEGG and GSVA analyses, which were positively correlated with the signature biomarkers. Additionally, the expression of the signature biomarkers was strongly correlated with various UC types and drug efficacy in different datasets. Notably, ECSCR was found to be upregulated in UC serum and exhibited a positive correlation with neutrophil levels in UC patients.

CONCLUSIONS

THY1, SLC6A14, ECSCR, FAP, and GPR109B can serve as potential biomarkers of UC and are closely related to signaling pathways associated with UC progression. The discovery of these markers provides valuable information for understanding the molecular mechanisms of UC.

摘要

背景

溃疡性结肠炎(UC)的诊断和治疗的主要挑战促使本研究发现有用的生物标志物并了解潜在的分子机制。

方法

本研究对肠黏膜活检的转录组数据进行了稳健秩聚合(RRA)分析,以鉴定差异基因。这些基因与 WGCNA 中的 UC 关键基因相交。机器学习鉴定了 UC 特征基因,有助于预测模型的开发。验证涉及外部数据用于诊断、进展和药物疗效评估,以及对临床血清样本进行 ELISA 检测。

结果

RRA 综合分析鉴定了 251 个上调和 211 个下调的 DEG,与 WGCNA 中的 UC 关键基因相交,产生了 212 个关键 DEG。随后,基于关键 DEG-THY1、SLC6A14、ECSCR、FAP 和 GPR109B,通过机器学习鉴定了五个 UC 特征生物标志物。构建了一个包含这五个基因的逻辑回归模型。该模型集和内部验证数据的 AUC 值分别为 0.995 和 0.959。机制上,KEGG 和 GSVA 分析表明 UC 中 IL-17 信号通路、TNF 信号通路和 PI3K-Akt 信号通路被激活,与特征生物标志物呈正相关。此外,特征生物标志物的表达与不同数据集的各种 UC 类型和药物疗效密切相关。值得注意的是,ECSCR 在 UC 血清中上调,并与 UC 患者中性粒细胞水平呈正相关。

结论

THY1、SLC6A14、ECSCR、FAP 和 GPR109B 可作为 UC 的潜在生物标志物,与 UC 进展相关的信号通路密切相关。这些标志物的发现为了解 UC 的分子机制提供了有价值的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验