Aaser Magnus Fjord, Staahltoft Søren Krabbe, Andersen Martin, Alstrup Aage Kristian Olsen, Sonne Christian, Bruhn Dan, Frikke John, Pertoldi Cino
Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark.
Animals (Basel). 2024 May 19;14(10):1506. doi: 10.3390/ani14101506.
There has been an increased focus on new technologies to monitor habitat use and behaviour of cattle to develop a more sustainable livestock grazing system without compromising animal welfare. One of the currently used methods for monitoring cattle behaviour is tri-axial accelerometer data from systems such as virtual fencing technology or bespoke monitoring technology. Collection and transmission of high-frequency accelerometer and GNSS data is a major energy cost, and quickly drains the battery in contemporary virtual fencing systems, making it unsuitable for long-term monitoring. In this paper, we explore the possibility of determining habitat preference and habitat utilisation patterns in cattle using low-frequency activity and location data. We achieve this by (1) calculating habitat selection ratios, (2) determining daily activity patterns, and (3) based on those, inferring grazing and resting sites in a group of cattle wearing virtual fencing collars in a coastal setting with grey, wooded, and decalcified dunes, humid dune slacks, and salt meadows. We found that GNSS data, and a measure of activity, combined with accurate mapping of habitats can be an effective tool in assessing habitat preference. The animals preferred salt meadows over the other habitats, with wooded dunes and humid dune slacks being the least preferred. We were able to identify daily patterns in activity. By comparing general trends in activity levels to the existing literature, and using a Gaussian mixture model, it was possible to infer resting and grazing behaviour in the different habitats. According to our inference of behaviour the herd predominantly used the salt meadows for resting and ruminating. The approach used in this study allowed us to use GNSS location data and activity data and combine it with accurate habitat mapping to assess habitat preference and habitat utilisation patterns, which can be an important tool for guiding management decisions.
人们越来越关注利用新技术来监测牛的栖息地使用情况和行为,以开发一种更可持续的家畜放牧系统,同时不损害动物福利。目前用于监测牛行为的一种方法是来自虚拟围栏技术或定制监测技术等系统的三轴加速度计数据。高频加速度计和全球导航卫星系统(GNSS)数据的收集和传输是一项主要的能源成本,会迅速耗尽当代虚拟围栏系统中的电池,使其不适用于长期监测。在本文中,我们探讨了使用低频活动和位置数据来确定牛的栖息地偏好和栖息地利用模式的可能性。我们通过以下方式实现这一目标:(1)计算栖息地选择比率;(2)确定每日活动模式;(3)在此基础上,推断一群佩戴虚拟围栏项圈的牛在沿海环境中的放牧和休息地点,该沿海环境包括灰色、树木繁茂和脱钙的沙丘、潮湿的沙丘洼地以及盐沼。我们发现,GNSS数据以及活动量度,再结合准确的栖息地地图,可成为评估栖息地偏好的有效工具。与其他栖息地相比,这些动物更喜欢盐沼,树木繁茂的沙丘和潮湿的沙丘洼地最不受欢迎。我们能够识别出每日活动模式。通过将活动水平的总体趋势与现有文献进行比较,并使用高斯混合模型,可以推断出不同栖息地中的休息和放牧行为。根据我们对行为的推断,牛群主要在盐沼中休息和反刍。本研究中使用的方法使我们能够利用GNSS位置数据和活动数据,并将其与准确的栖息地地图相结合,以评估栖息地偏好和栖息地利用模式,这可以成为指导管理决策的重要工具。