Chopra Kareemah, Cameron Tom Craig, Beecroft Roger C, Bristow Luke, Codling Edward A
School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester, United Kingdom.
School of Life Sciences, University of Essex, Colchester, United Kingdom.
Front Vet Sci. 2025 Mar 12;12:1536977. doi: 10.3389/fvets.2025.1536977. eCollection 2025.
Identifying where and how grazing animals are active is crucial for informed decision-making in livestock and conservation management. Virtual fencing systems, which use animal-mounted location tracking sensors to automatically monitor and manage the movement and space-use of livestock, are increasingly being used to control grazing as part of Precision Livestock Farming (PLF) approaches. The sensors used in virtual fencing systems are often able to capture additional information beyond animal location, including activity levels and environmental information such as temperature, but this additional data is not always made available to the end user in an interpretable form. In this study we demonstrate how a commercial virtual fencing system (Nofence®) can be used to map the spatiotemporal distribution of livestock activity levels in the context of grazing. We first demonstrate how Nofence® activity index measurements correlate strongly with direct in-situ observations of grazing intensity by individual cattle. Using methods adapted from movement ecology for analysis of home range, we subsequently demonstrate how space-use and cumulative and average activity levels of grazing cattle can be spatially mapped and analyzed over time using two different approaches: a simple but computationally efficient cell-count method and a novel adapted version of a more complex Brownian Bridge Movement Model. We further highlight how the same sensors can also be used to map spatiotemporal variations in temperature. This study highlights how data generated from virtual fencing systems could provide valuable additional insights for livestock managers, potentially leading to improved production efficiencies or conservation outcomes.
确定放牧动物的活动地点和方式对于畜牧和保护管理中的明智决策至关重要。虚拟围栏系统利用安装在动物身上的位置跟踪传感器自动监测和管理牲畜的活动及空间使用情况,作为精准畜牧养殖(PLF)方法的一部分,越来越多地被用于控制放牧。虚拟围栏系统中使用的传感器通常能够获取动物位置以外的其他信息,包括活动水平以及温度等环境信息,但这些额外数据并不总是以可解释的形式提供给最终用户。在本研究中,我们展示了如何使用一种商业虚拟围栏系统(Nofence®)来绘制放牧背景下牲畜活动水平的时空分布。我们首先展示了Nofence®活动指数测量值与个体牛的放牧强度的直接现场观测结果如何密切相关。通过采用运动生态学中的方法来分析活动范围,我们随后展示了如何使用两种不同方法,随着时间推移在空间上绘制和分析放牧牛的空间使用情况、累积活动水平和平均活动水平:一种简单但计算效率高的单元格计数方法,以及一种更复杂的布朗桥运动模型的新颖改编版本。我们还进一步强调了相同的传感器如何也可用于绘制温度的时空变化。本研究强调了虚拟围栏系统生成的数据如何能为畜牧管理人员提供有价值的额外见解,有可能提高生产效率或改善保护成果。