Suppr超能文献

基于机器学习利用SSR标记鉴定交配型及甲霜灵反应

Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Using SSR Markers.

作者信息

Agho Collins A, Śliwka Jadwiga, Nassar Helina, Niinemets Ülo, Runno-Paurson Eve

机构信息

Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia.

Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, Department of Potato Genetics and Parental Lines, Platanowa Str. 19, 05-831 Młochów, Poland.

出版信息

Microorganisms. 2024 May 14;12(5):982. doi: 10.3390/microorganisms12050982.

Abstract

is the causal agent of late blight in potato. The occurrence of with both A1 and A2 mating types in the field may result in sexual reproduction and the generation of recombinant strains. Such strains with new combinations of traits can be highly aggressive, resistant to fungicides, and can make the disease difficult to control in the field. Metalaxyl-resistant isolates are now more prevalent in potato fields. Understanding the genetic structure and rapid identification of mating types and metalaxyl response of in the field is a prerequisite for effective late blight disease monitoring and management. Molecular and phenotypic assays involving molecular and phenotypic markers such as mating types and metalaxyl response are typically conducted separately in the studies of the genotypic and phenotypic diversity of . As a result, there is a pressing need to reduce the experimental workload and more efficiently assess the aggressiveness of different strains. We think that employing genetic markers to not only estimate genotypic diversity but also to identify the mating type and fungicide response using machine learning techniques can guide and speed up the decision-making process in late blight disease management, especially when the mating type and metalaxyl resistance data are not available. This technique can also be applied to determine these phenotypic traits for dead isolates. In this study, over 600 isolates from different populations-Estonia, Pskov region, and Poland-were classified for mating types and metalaxyl response using machine learning techniques based on simple sequence repeat (SSR) markers. For both traits, random forest and the support vector machine demonstrated good accuracy of over 70%, compared to the decision tree and artificial neural network models whose accuracy was lower. There were also associations ( < 0.05) between the traits and some of the alleles detected, but machine learning prediction techniques based on multilocus SSR genotypes offered better prediction accuracy.

摘要

是马铃薯晚疫病的病原体。田间同时存在A1和A2交配型可能导致有性繁殖并产生重组菌株。这种具有新性状组合的菌株可能具有高度侵袭性、抗杀菌剂,会使田间病害难以控制。对甲霜灵具有抗性的分离株如今在马铃薯田更为普遍。了解田间的遗传结构以及快速鉴定的交配型和对甲霜灵的反应,是有效监测和管理晚疫病的前提条件。在对的基因型和表型多样性研究中,涉及交配型和对甲霜灵反应等分子和表型标记的分子和表型分析通常是分开进行的。因此,迫切需要减少实验工作量并更高效地评估不同菌株的侵袭性。我们认为,利用遗传标记不仅估计基因型多样性,还使用机器学习技术鉴定交配型和杀菌剂反应,可指导并加速晚疫病管理中的决策过程,尤其是在交配型和甲霜灵抗性数据不可用时。该技术也可用于确定死亡分离株的这些表型特征。在本研究中,使用基于简单序列重复(SSR)标记的机器学习技术,对来自爱沙尼亚、普斯科夫地区和波兰等不同种群的600多个分离株进行了交配型和对甲霜灵反应的分类。对于这两个性状,随机森林和支持向量机表现出超过70%的良好准确率,相比之下,决策树和人工神经网络模型的准确率较低。这些性状与检测到的一些等位基因之间也存在关联(<0.05),但基于多位点SSR基因型的机器学习预测技术提供了更好的预测准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed16/11124124/4c5d00b1e9ba/microorganisms-12-00982-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验