文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在支持平流和扩散混合的3D打印微流控芯片中合成亚微米级碳酸钙颗粒

Synthesis of Submicron CaCO Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing.

作者信息

Reznik Ivan, Kolesova Ekaterina, Pestereva Anna, Baranov Konstantin, Osin Yury, Bogdanov Kirill, Swart Jacobus, Moshkalev Stanislav, Orlova Anna

机构信息

International Research and Education Center for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia.

Faculty of Electrical Engineering and Computing, University of Campinas, Campinas 13083-970, Brazil.

出版信息

Micromachines (Basel). 2024 May 15;15(5):652. doi: 10.3390/mi15050652.


DOI:10.3390/mi15050652
PMID:38793225
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11123073/
Abstract

Microfluidic technology provides a solution to the challenge of continuous CaCO particle synthesis. In this study, we utilized a 3D-printed microfluidic chip to synthesize CaCO micro- and nanoparticles in vaterite form. Our primary focus was on investigating a continuous one-phase synthesis method tailored for the crystallization of these particles. By employing a combination of confocal and scanning electron microscopy, along with Raman spectroscopy, we were able to thoroughly evaluate the synthesis efficiency. This evaluation included aspects such as particle size distribution, morphology, and polymorph composition. The results unveiled the existence of two distinct synthesis regimes within the 3D-printed microfluidic chips, which featured a channel cross-section of 2 mm. In the first regime, which was characterized by chaotic advection, particles with an average diameter of around 2 μm were produced, thereby displaying a broad size distribution. Conversely, the second regime, marked by diffusion mixing, led to the synthesis of submicron particles (approximately 800-900 nm in diameter) and even nanosized particles (70-80 nm). This research significantly contributes valuable insights to both the understanding and optimization of microfluidic synthesis processes, particularly in achieving the controlled production of submicron and nanoscale particles.

摘要

微流控技术为连续合成碳酸钙颗粒的挑战提供了一种解决方案。在本研究中,我们利用3D打印的微流控芯片以球霰石形式合成碳酸钙微米和纳米颗粒。我们主要关注研究一种为这些颗粒结晶量身定制的连续单相合成方法。通过结合共聚焦显微镜、扫描电子显微镜以及拉曼光谱,我们能够全面评估合成效率。该评估包括颗粒尺寸分布、形态和多晶型组成等方面。结果揭示了在通道横截面为2毫米的3D打印微流控芯片内存在两种不同的合成模式。在第一种模式中,以混沌平流为特征,产生了平均直径约为2μm的颗粒,因此显示出较宽的尺寸分布。相反,第二种模式以扩散混合为特征,导致合成了亚微米颗粒(直径约800 - 900nm)甚至纳米颗粒(70 - 80nm)。这项研究为理解和优化微流控合成过程做出了重大贡献,特别是在实现亚微米和纳米级颗粒的可控生产方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/b9f2b4810ac1/micromachines-15-00652-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/fc1fc66ac57e/micromachines-15-00652-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/0a2bd728bfa4/micromachines-15-00652-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/136dfb4f008f/micromachines-15-00652-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/7cc1171a2b72/micromachines-15-00652-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/6492af53945c/micromachines-15-00652-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/4cfa1401d8e7/micromachines-15-00652-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/b9f2b4810ac1/micromachines-15-00652-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/fc1fc66ac57e/micromachines-15-00652-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/0a2bd728bfa4/micromachines-15-00652-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/136dfb4f008f/micromachines-15-00652-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/7cc1171a2b72/micromachines-15-00652-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/6492af53945c/micromachines-15-00652-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/4cfa1401d8e7/micromachines-15-00652-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bf/11123073/b9f2b4810ac1/micromachines-15-00652-g007.jpg

相似文献

[1]
Synthesis of Submicron CaCO Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing.

Micromachines (Basel). 2024-5-15

[2]
Microfluidic Vaterite Synthesis: Approaching the Nanoscale Particles.

Nanomaterials (Basel). 2023-12-4

[3]
Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers.

Soft Matter. 2020-3-9

[4]
3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels.

Nanomaterials (Basel). 2019-10-12

[5]
Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines.

Pharmaceutics. 2021-12-10

[6]
Continuous Preparation of Semiconducting Polymer Nanoparticles with Varied Sizes for Online Fluorescence Sensing via a Laser-Tailored 3D Microfluidic Chip.

Anal Chem. 2023-7-11

[7]
Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.

Lab Chip. 2018-7-10

[8]
Vaterite submicron particles designed for photodynamic therapy in cells.

Photodiagnosis Photodyn Ther. 2020-9

[9]
Analysis of the Diffusion Process by pH Indicator in Microfluidic Chips for Liposome Production.

Micromachines (Basel). 2017-7-1

[10]
The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles.

J Pharm Pharmacol. 2023-2-8

引用本文的文献

[1]
New 3D Spiral Microfluidic Platform Tested for FeO@SA Nanoparticle Synthesis.

Molecules. 2025-7-8

本文引用的文献

[1]
Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties.

Micromachines (Basel). 2023-12-21

[2]
Microfluidic Vaterite Synthesis: Approaching the Nanoscale Particles.

Nanomaterials (Basel). 2023-12-4

[3]
Smart Delivery Systems Responsive to Cathepsin B Activity for Cancer Treatment.

Pharmaceutics. 2023-6-29

[4]
Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.

ACS Nano. 2023-8-8

[5]
3D Printed Gas Distributor for Enhanced Production of CaCO via Bubbling Carbonation.

ACS Omega. 2023-1-6

[6]
Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine.

Int J Mol Sci. 2022-11-2

[7]
The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives.

Adv Drug Deliv Rev. 2022-12

[8]
Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.

Adv Drug Deliv Rev. 2022-9

[9]
An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment.

Cancers (Basel). 2022-6-10

[10]
Hard, Soft, and Hard--Soft Drug Delivery Carriers Based on CaCO and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications.

Pharmaceutics. 2022-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索