Suppr超能文献

基于三维(3D)微流控的微机电系统(MEMS)的增材制造在声流控应用中的研究进展

Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.

机构信息

Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Lab Chip. 2018 Jul 10;18(14):2087-2098. doi: 10.1039/c8lc00427g.

Abstract

Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.

摘要

三维(3D)打印现在能够制造 3D 结构的电子设备和微流控器件。此外,传统的微机电系统(MEMS)的减法制造工艺相对将设备结构限制在二维,并需要进行微流控接口的后处理步骤。因此,这项工作的目标是创建一种用于制造基于 3D 微流控的 MEMS 器件的增材制造方法,该方法能够实现机电系统的 3D 配置和微流控的同时集成。在这里,我们展示了使用增材制造制造基于微流控的声流控器件的能力,该器件包含正交的面外压电传感器和执行器。这些器件是使用具有集成拾取和放置功能的微挤出 3D 打印系统制造的。增材组装的材料和组件包括 3D 打印的环氧树脂、聚二甲基硅氧烷(PDMS)、银纳米粒子和共晶镓-铟以及机器人嵌入的压电芯片(锆钛酸铅(PZT))。电阻抗谱和有限元建模研究表明,嵌入式 PZT 芯片在 0-20 MHz 频率范围内表现出多种不同模态形状的共振模式。使用中性浮力颗粒(直径= 0.8-70μm)的流动可视化研究证实,3D 打印器件产生的体声波(BAWs)能够实现对悬浮颗粒的尺寸选择性操纵、捕获和分离,这些悬浮颗粒位于液滴和微通道中。在连续流动格式下的流动可视化研究表明,基于对平面内或面外 PZT 芯片的选择性激励,悬浮颗粒可以朝向或远离微流控通道的壁移动。这项工作表明,增材制造有可能为声流控和微流控器件的设计和制造提供新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf5/6077993/5fff4e65eb7e/nihms-975189-f0001.jpg

相似文献

3
3D Printed Microfluidics.3D打印微流控技术
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.

引用本文的文献

1
3D printing of micro-nano devices and their applications.微纳器件的3D打印及其应用。
Microsyst Nanoeng. 2025 Feb 27;11(1):35. doi: 10.1038/s41378-024-00812-3.
4
Recent Advances in 3D Printing of Biomedical Sensing Devices.生物医学传感设备3D打印的最新进展
Adv Funct Mater. 2022 Feb 23;32(9). doi: 10.1002/adfm.202107671. Epub 2021 Nov 25.
8
Electrochemical biosensors for pathogen detection.用于病原体检测的电化学生物传感器。
Biosens Bioelectron. 2020 Jul 1;159:112214. doi: 10.1016/j.bios.2020.112214. Epub 2020 Apr 12.

本文引用的文献

7
3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics.乳液和泡沫的 3D 打印制备分级多孔陶瓷。
Adv Mater. 2016 Dec;28(45):9993-9999. doi: 10.1002/adma.201603390. Epub 2016 Sep 28.
8
Holograms for acoustics.声全息图。
Nature. 2016 Sep 22;537(7621):518-22. doi: 10.1038/nature19755.
9
3D Printed Bionic Nanodevices.3D打印仿生纳米器件
Nano Today. 2016 Jun;11(3):330-350. doi: 10.1016/j.nantod.2016.04.007. Epub 2016 Apr 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验