Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
Lab Chip. 2018 Jul 10;18(14):2087-2098. doi: 10.1039/c8lc00427g.
Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.
三维(3D)打印现在能够制造 3D 结构的电子设备和微流控器件。此外,传统的微机电系统(MEMS)的减法制造工艺相对将设备结构限制在二维,并需要进行微流控接口的后处理步骤。因此,这项工作的目标是创建一种用于制造基于 3D 微流控的 MEMS 器件的增材制造方法,该方法能够实现机电系统的 3D 配置和微流控的同时集成。在这里,我们展示了使用增材制造制造基于微流控的声流控器件的能力,该器件包含正交的面外压电传感器和执行器。这些器件是使用具有集成拾取和放置功能的微挤出 3D 打印系统制造的。增材组装的材料和组件包括 3D 打印的环氧树脂、聚二甲基硅氧烷(PDMS)、银纳米粒子和共晶镓-铟以及机器人嵌入的压电芯片(锆钛酸铅(PZT))。电阻抗谱和有限元建模研究表明,嵌入式 PZT 芯片在 0-20 MHz 频率范围内表现出多种不同模态形状的共振模式。使用中性浮力颗粒(直径= 0.8-70μm)的流动可视化研究证实,3D 打印器件产生的体声波(BAWs)能够实现对悬浮颗粒的尺寸选择性操纵、捕获和分离,这些悬浮颗粒位于液滴和微通道中。在连续流动格式下的流动可视化研究表明,基于对平面内或面外 PZT 芯片的选择性激励,悬浮颗粒可以朝向或远离微流控通道的壁移动。这项工作表明,增材制造有可能为声流控和微流控器件的设计和制造提供新的机会。