Suppr超能文献

基于三阶剪切变形理论的厚功能梯度材料圆锥壳热振动分析

Thermal Vibration of Thick FGM Conical Shells by Using Third-Order Shear Deformation Theory.

作者信息

Hong Chih-Chiang

机构信息

Department of Mechanical Engineering, Hsiuping University of Science and Technology, Taichung 412-406, Taiwan.

出版信息

Materials (Basel). 2024 May 16;17(10):2403. doi: 10.3390/ma17102403.

Abstract

A time-dependent third-order shear deformation theory (TSDT) approach on the displacements of thick functionally graded material (FGM) conical shells under dynamic thermal vibration is studied. Dynamic equations of motion with TSDT for thick FGM conical shells are applied directly with the partial derivative of variable *θ in the curve coordinates (, θ, ) instead of in the Cartesian coordinates (, , ) for thick FGM plates, where * is the middle-surface radius at any point on conical shells. The generalized differential quadrature (GDQ) numerical method is used to solve the dynamic differential equations in equilibrium matrix forms under thermal loads. It is the novelty of the current study to identify the parametric effects of shear correction coefficient, environment temperature, TSDT model, and FGM power law index on the displacements and stresses in the thick conical shells only subjected to sinusoidal heating loads. The physical parts with values on the length-to-thickness ratio equals 5, and 10 FGMs can be used in an area of an airplane engine that usually operates near more than 1000 K of temperatures when the thermal stress is considered and affected. The important findings of the presented study are listed as follows. The values of normal stress are in decreasing tendencies with time in cases when the coefficient c1 equals 0.925925/mm in TSDT and length-to-thickness ratio equals 5. The shear stress values in plane direction on the minor middle-surface radius () equals the major middle-surface radius () over 8 and length-to-thickness ratio equals to 5 can withstand = 1000 K of pressure.

摘要

研究了一种基于时间的三阶剪切变形理论(TSDT)方法,用于分析动态热振动作用下厚功能梯度材料(FGM)圆锥壳的位移。对于厚FGM圆锥壳,直接应用TSDT的运动动力学方程,采用曲线坐标(r,θ,z)中的变量θ的偏导数,而不是厚FGM板笛卡尔坐标(x,y,z)中的变量z,其中r*是圆锥壳上任意点的中面半径。采用广义微分求积(GDQ)数值方法求解热载荷作用下平衡矩阵形式的动态微分方程。本研究的新颖之处在于,仅在正弦加热载荷作用下,确定剪切修正系数、环境温度、TSDT模型和FGM幂律指数对厚圆锥壳位移和应力的参数影响。当考虑热应力影响时,长度与厚度比等于5和等于10的FGM的物理部件可用于飞机发动机中通常在超过1000K温度下运行的区域。本研究的重要发现如下。在TSDT中系数c1等于0.925925/mm且长度与厚度比等于5的情况下,法向应力值随时间呈下降趋势。在小中面半径(r)等于大中面半径(R)超过8且长度与厚度比等于5的情况下,中面平面方向上的剪应力值能够承受1000K的压力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1203/11123208/e7aaff9f286f/materials-17-02403-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验