Li Qingwang, Cheng Feng, Zhang Xinran
School of Architecture and Transportation Engineering, Guilin University of Electronic Science and Technology, Guilin 541004, China.
Sensors (Basel). 2024 May 7;24(10):2959. doi: 10.3390/s24102959.
The finite element numerical simulation results of deep pit deformation are greatly influenced by soil layer parameters, which are crucial in determining the accuracy of deformation prediction results. This study employs the orthogonal experimental design to determine the combinations of various soil layer parameters in deep pits. Displacement values at specific measurement points were calculated using PLAXIS 3D under these varying parameter combinations to generate training samples. The nonlinear mapping ability of the Back Propagation (BP) neural network and Particle Swarm Optimization (PSO) were used for sample global optimization. Combining these with actual onsite measurements, we inversely calculate soil layer parameter values to update the input parameters for PLAXIS 3D. This allows us to conduct dynamic deformation prediction studies throughout the entire excavation process of deep pits. The results indicate that the use of the PSO-BP neural network for inverting soil layer parameters effectively enhances the convergence speed of the BP neural network model and avoids the issue of easily falling into local optimal solutions. The use of PLAXIS 3D to simulate the excavation process of the pit accurately reflects the dynamic changes in the displacement of the retaining structure, and the numerical simulation results show good agreement with the measured values. By updating the model parameters in real-time and calculating the pile displacement under different working conditions, the absolute errors between the measured and simulated values of pile top vertical displacement and pile body maximum horizontal displacement can be effectively reduced. This suggests that inverting soil layer parameters using measured values from working conditions is a feasible method for dynamically predicting the excavation process of the pit. The research results have some reference value for the selection of soil layer parameters in similar areas.
深基坑变形的有限元数值模拟结果受土层参数影响较大,土层参数对于确定变形预测结果的准确性至关重要。本研究采用正交试验设计来确定深基坑中各土层参数的组合。在这些不同的参数组合下,使用PLAXIS 3D计算特定测量点的位移值以生成训练样本。利用反向传播(BP)神经网络的非线性映射能力和粒子群优化(PSO)进行样本全局优化。将这些与实际现场测量相结合,反算土层参数值以更新PLAXIS 3D的输入参数。这使得我们能够在深基坑的整个开挖过程中进行动态变形预测研究。结果表明,利用PSO - BP神经网络反演土层参数有效提高了BP神经网络模型的收敛速度,避免了易陷入局部最优解的问题。使用PLAXIS 3D模拟基坑开挖过程准确反映了支护结构位移的动态变化,数值模拟结果与实测值吻合良好。通过实时更新模型参数并计算不同工况下的桩位移,可有效减小桩顶竖向位移和桩身最大水平位移实测值与模拟值之间的绝对误差。这表明利用工况实测值反演土层参数是动态预测基坑开挖过程的一种可行方法。研究成果对类似地区土层参数的选取具有一定的参考价值。