Bevica Center, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark.
Département de Neurosciences, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada.
Sensors (Basel). 2024 May 7;24(10):2967. doi: 10.3390/s24102967.
Our aim was to use intracortical recording to enable the tracking of ischemic infarct development over the first few critical hours of ischemia with a high time resolution in pigs. We employed electrophysiological measurements to obtain quick feedback on neural function, which might be useful for screening, e.g., for the optimal dosage and timing of agents prior to further pre-clinical evaluation.
Micro-electrode arrays containing 16 (animal 1) or 32 electrodes (animal 2-7) were implanted in the primary somatosensory cortex of seven female pigs, and continuous electrical stimulation was applied at 0.2 Hz to a cuff electrode implanted on the ulnar nerve. Ischemic stroke was induced after 30 min of baseline recording by injection of endothelin-1 onto the cortex adjacent to the micro-electrode array. Evoked responses were extracted over a moving window of 180 s and averaged across channels as a measure of cortical excitability.
Across the animals, the cortical excitability was significantly reduced in all seven 30 min segments following endothelin-1 injection, as compared to the 30 min preceding this intervention. This difference was not explained by changes in the anesthesia, ventilation, end-tidal CO, mean blood pressure, heart rate, blood oxygenation, or core temperature, which all remained stable throughout the experiment.
The animal model may assist in maturing neuroprotective approaches by testing them in an accessible model of resemblance to human neural and cardiovascular physiology and body size. This would constitute an intermediate step for translating positive results from rodent studies into human application, by more efficiently enabling effective optimization prior to chronic pre-clinical studies in large animals.
我们的目的是使用皮层内记录技术,在猪的缺血早期的几个关键小时内,以高时间分辨率跟踪缺血性梗死的发展。我们采用电生理测量来快速获取神经功能的反馈,这可能有助于筛选,例如,在进一步的临床前评估之前,筛选药物的最佳剂量和时间。
将包含 16 个(动物 1)或 32 个电极的微电极阵列植入 7 只雌性猪的初级体感皮层,并用植入尺神经的袖带电极以 0.2 Hz 的频率进行连续电刺激。在基线记录 30 分钟后,通过在微电极阵列附近的皮质注射内皮素-1 诱导缺血性中风。在移动窗口 180 s 内提取诱发电响应,并在通道之间平均作为皮质兴奋性的度量。
在所有 7 只动物中,与注射内皮素-1之前的 30 分钟相比,注射内皮素-1后的所有 30 分钟段中,皮质兴奋性均显著降低。这种差异不能用麻醉、通气、呼气末 CO、平均血压、心率、血氧饱和度或核心温度的变化来解释,这些参数在整个实验过程中均保持稳定。
该动物模型可以通过在与人类神经和心血管生理学以及体型相似的可接近模型中测试神经保护方法来帮助成熟这些方法。这将是将啮齿动物研究中的阳性结果转化为人类应用的一个中间步骤,通过在大型动物的慢性临床前研究之前更有效地进行有效优化。