Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.).
Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.).
Stroke. 2022 Apr;53(4):1386-1395. doi: 10.1161/STROKEAHA.121.038085. Epub 2022 Mar 4.
Cortical spreading depolarization (CSD) is a massive neuro-glial depolarization wave, which propagates across the cerebral cortex. In stroke, CSD is a necessary and ubiquitous mechanism for the development of neuronal lesions that initiates in the ischemic core and propagates through the penumbra extending the tissue injury. Although CSD propagation induces dramatic changes in cerebral blood flow, the vascular responses in different ischemic regions and their consequences on reperfusion and recovery remain to be defined.
Ischemia was performed using the thrombin model of stroke and reperfusion was induced by r-tPA (recombinant tissue-type plasminogen activator) administration in mice. We used in vivo electrophysiology and laser speckle contrast imaging simultaneously to assess both electrophysiological and hemodynamic characteristics of CSD after ischemia onset. Neurological deficits were assessed on day 1, 3, and 7. Furthermore, infarct sizes were quantified using 2,3,5-triphenyltetrazolium chloride on day 7.
After ischemia, CSDs were evidenced by the characteristic propagating DC shift extending far beyond the ischemic area. On the vascular level, we observed 2 types of responses: some mice showed spreading hyperemia confined to the penumbra area (penumbral spreading hyperemia) while other showed spreading hyperemia propagating in the full hemisphere (full hemisphere spreading hyperemia). Penumbral spreading hyperemia was associated with severe stroke-induced damage, while full hemisphere spreading hyperemia indicated beneficial infarct outcome and potential viability of the infarct core. In all animals, thrombolysis with r-tPA modified the shape of the vascular response to CSD and reduced lesion volume.
Our results show that different types of spreading hyperemia occur spontaneously after the onset of ischemia. Depending on their shape and distribution, they predict severity of injury and outcome. Furthermore, our data show that modulating the hemodynamic response to CSD may be a promising therapeutic strategy to attenuate stroke outcome.
皮质扩散性去极化(CSD)是一种大规模的神经胶质去极化波,它在大脑皮层中传播。在中风中,CSD 是缺血核心引发并通过扩展组织损伤的半影传播的神经元损伤发展的必要且普遍存在的机制。尽管 CSD 传播会引起脑血流的剧烈变化,但不同缺血区域的血管反应及其对再灌注和恢复的影响仍有待确定。
采用凝血酶诱导的中风模型进行缺血,再灌注通过给予 r-tPA(重组组织型纤溶酶原激活剂)诱导。我们同时使用体内电生理学和激光散斑对比成像来评估缺血后 CSD 的电生理和血液动力学特征。在第 1、3 和 7 天评估神经功能缺损。此外,在第 7 天使用 2,3,5-三苯基氯化四氮唑定量梗死面积。
缺血后,CSD 通过扩展到远超出缺血区域的特征性传播 DC 偏移得到证实。在血管水平上,我们观察到 2 种类型的反应:一些小鼠表现出局限于半影区的扩散性充血(半影区扩散性充血),而另一些小鼠则表现出在整个半球传播的扩散性充血(全半球扩散性充血)。半影区扩散性充血与严重的中风诱导损伤有关,而全半球扩散性充血表明梗死核心有良好的梗死预后和潜在的存活能力。在所有动物中,r-tPA 溶栓改变了 CSD 对血管反应的形状并减少了损伤体积。
我们的结果表明,在缺血开始后,会自发出现不同类型的扩散性充血。根据它们的形状和分布,它们可以预测损伤的严重程度和结果。此外,我们的数据表明,调节 CSD 的血液动力学反应可能是减轻中风结果的一种有前途的治疗策略。