Suppr超能文献

一种用于抑制合成孔径雷达图像域中多线性调频干扰的稀疏恢复算法。

A Sparse Recovery Algorithm for Suppressing Multiple Linear Frequency Modulation Interference in the Synthetic Aperture Radar Image Domain.

作者信息

Tong Guanqi, Lu Xingyu, Yang Jianchao, Yu Wenchao, Gu Hong, Su Weimin

机构信息

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Sensors (Basel). 2024 May 13;24(10):3095. doi: 10.3390/s24103095.

Abstract

In synthetic aperture radar (SAR) signal processing, compared with the raw data of level-0, level-1 SAR images are more readily accessible and available in larger quantities. However, an amount of level-1 images are affected by radio frequency interference (RFI), which typically originates from Linear Frequency Modulation (LFM) signals emitted by ground-based radars. Existing research on interference suppression in level-1 data has primarily focused on two methods: transforming SAR images into simulated echo data for interference suppression, or focusing interference in the frequency domain and applying notching filters to reduce interference energy. However, these methods overlook the effective utilization of the interference parameters or are confined to suppressing only one type of LFM interference at a time. In certain SAR images, multiple types of LFM interference manifest bright radiation artifacts that exhibit varying lengths along the range direction while remaining constant in the azimuth direction. It is necessary to suppress multiple LFM interference on SAR images when original echo data are unavailable. This article proposes a joint sparse recovery algorithm for interference suppression in the SAR image domain. In the SAR image domain, two-dimensional LFM interference typically exhibits differences in parameters such as frequency modulation rate and pulse width in the range direction, while maintaining consistency in the azimuth direction. Based on this observation, this article constructs a series of focusing operators for LFM interference in SAR images. These operators enable the sparse representation of dispersed LFM interference. Subsequently, an optimization model is developed that can effectively suppress multi-LFM interference and reduce image loss with the assistance of a regularization term in the image domain. Simulation experiments conducted in various scenarios validate the superior performance of the proposed method.

摘要

在合成孔径雷达(SAR)信号处理中,与0级原始数据相比,1级SAR图像更容易获取且数量更多。然而,大量的1级图像受到射频干扰(RFI)的影响,这种干扰通常源于地面雷达发射的线性调频(LFM)信号。现有的关于1级数据干扰抑制的研究主要集中在两种方法上:将SAR图像转换为模拟回波数据进行干扰抑制,或者在频域中聚焦干扰并应用陷波滤波器来降低干扰能量。然而,这些方法忽视了干扰参数的有效利用,或者一次只能抑制一种类型的LFM干扰。在某些SAR图像中,多种类型的LFM干扰表现为明亮的辐射伪影,这些伪影在距离方向上长度不同,而在方位方向上保持不变。当原始回波数据不可用时,有必要对SAR图像上的多种LFM干扰进行抑制。本文提出了一种在SAR图像域中进行干扰抑制的联合稀疏恢复算法。在SAR图像域中,二维LFM干扰通常在距离方向上表现出调频速率和脉冲宽度等参数的差异,而在方位方向上保持一致。基于这一观察结果,本文构建了一系列用于SAR图像中LFM干扰的聚焦算子。这些算子能够对分散的LFM干扰进行稀疏表示。随后,开发了一个优化模型,该模型可以在图像域正则项的辅助下有效抑制多LFM干扰并减少图像损失。在各种场景下进行的仿真实验验证了所提方法的优越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eec/11125936/6d1f74a519ad/sensors-24-03095-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验