Suppr超能文献

人类无法识别的差分隐私噪声图像生成方法。

Human-Unrecognizable Differential Private Noised Image Generation Method.

作者信息

Kim Hyeong-Geon, Shin Jinmyeong, Choi Yoon-Ho

机构信息

School of Computer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

出版信息

Sensors (Basel). 2024 May 16;24(10):3166. doi: 10.3390/s24103166.

Abstract

Differential privacy has emerged as a practical technique for privacy-preserving deep learning. However, recent studies on privacy attacks have demonstrated vulnerabilities in the existing differential privacy implementations for deep models. While encryption-based methods offer robust security, their computational overheads are often prohibitive. To address these challenges, we propose a novel differential privacy-based image generation method. Our approach employs two distinct noise types: one makes the image unrecognizable to humans, preserving privacy during transmission, while the other maintains features essential for machine learning analysis. This allows the deep learning service to provide accurate results, without compromising data privacy. We demonstrate the feasibility of our method on the CIFAR100 dataset, which offers a realistic complexity for evaluation.

摘要

差分隐私已成为一种用于隐私保护深度学习的实用技术。然而,最近关于隐私攻击的研究表明,现有深度模型的差分隐私实现存在漏洞。虽然基于加密的方法提供了强大的安全性,但其计算开销往往过高。为应对这些挑战,我们提出了一种新颖的基于差分隐私的图像生成方法。我们的方法采用两种不同类型的噪声:一种使图像对人类不可识别,在传输过程中保护隐私,而另一种保留机器学习分析所需的特征。这使得深度学习服务能够提供准确的结果,同时不损害数据隐私。我们在CIFAR100数据集上证明了我们方法的可行性,该数据集为评估提供了现实的复杂度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba69/11125371/7de411ca3536/sensors-24-03166-g001.jpg

相似文献

1
Human-Unrecognizable Differential Private Noised Image Generation Method.
Sensors (Basel). 2024 May 16;24(10):3166. doi: 10.3390/s24103166.
2
Is Homomorphic Encryption-Based Deep Learning Secure Enough?
Sensors (Basel). 2021 Nov 24;21(23):7806. doi: 10.3390/s21237806.
4
Towards realistic privacy-preserving deep learning over encrypted medical data.
Front Cardiovasc Med. 2023 Apr 28;10:1117360. doi: 10.3389/fcvm.2023.1117360. eCollection 2023.
6
Privacy-enhanced multi-party deep learning.
Neural Netw. 2020 Jan;121:484-496. doi: 10.1016/j.neunet.2019.10.001. Epub 2019 Oct 11.
7
Privacy-Preserving Artificial Intelligence: Application to Precision Medicine.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6498-6504. doi: 10.1109/EMBC.2019.8857960.
8
Decentralised, collaborative, and privacy-preserving machine learning for multi-hospital data.
EBioMedicine. 2024 Mar;101:105006. doi: 10.1016/j.ebiom.2024.105006. Epub 2024 Feb 19.
10
Privacy-preserving cancer type prediction with homomorphic encryption.
Sci Rep. 2023 Jan 30;13(1):1661. doi: 10.1038/s41598-023-28481-8.

本文引用的文献

1
Is Homomorphic Encryption-Based Deep Learning Secure Enough?
Sensors (Basel). 2021 Nov 24;21(23):7806. doi: 10.3390/s21237806.
2
Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
PLoS Biol. 2021 Dec 9;19(12):e3001418. doi: 10.1371/journal.pbio.3001418. eCollection 2021 Dec.
3
CNN-RNN Based Intelligent Recommendation for Online Medical Pre-Diagnosis Support.
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):912-921. doi: 10.1109/TCBB.2020.2994780. Epub 2021 Jun 3.
4
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验