Suppr超能文献

迈向基于加密医疗数据的现实隐私保护深度学习。

Towards realistic privacy-preserving deep learning over encrypted medical data.

作者信息

Cabrero-Holgueras José, Pastrana Sergio

机构信息

Innovation, IT Department, CERN, Geneva, Switzerland.

Computer Science Department, Universidad Carlos III de Madrid, Madrid, Spain.

出版信息

Front Cardiovasc Med. 2023 Apr 28;10:1117360. doi: 10.3389/fcvm.2023.1117360. eCollection 2023.

Abstract

Cardiovascular disease supposes a substantial fraction of healthcare systems. The invisible nature of these pathologies demands solutions that enable remote monitoring and tracking. Deep Learning (DL) has arisen as a solution in many fields, and in healthcare, multiple successful applications exist for image enhancement and health outside hospitals. However, the computational requirements and the need for large-scale datasets limit DL. Thus, we often offload computation onto server infrastructure, and various Machine-Learning-as-a-Service (MLaaS) platforms emerged from this need. These enable the conduction of heavy computations in a cloud infrastructure, usually equipped with high-performance computing servers. Unfortunately, the technical barriers persist in healthcare ecosystems since sending sensitive data (e.g., medical records or personally identifiable information) to third-party servers involves privacy and security concerns with legal and ethical implications. In the scope of Deep Learning for Healthcare to improve cardiovascular health, Homomorphic Encryption (HE) is a promising tool to enable secure, private, and legal health outside hospitals. Homomorphic Encryption allows for privacy-preserving computations over encrypted data, thus preserving the privacy of the processed information. Efficient HE requires structural optimizations to perform the complex computation of the internal layers. One such optimization is Packed Homomorphic Encryption (PHE), which encodes multiple elements on a single ciphertext, allowing for efficient Single Instruction over Multiple Data (SIMD) operations. However, using PHE in DL circuits is not straightforward, and it demands new algorithms and data encoding, which existing literature has not adequately addressed. To fill this gap, in this work, we elaborate on novel algorithms to adapt the linear algebra operations of DL layers to PHE. Concretely, we focus on Convolutional Neural Networks. We provide detailed descriptions and insights into the different algorithms and efficient inter-layer data format conversion mechanisms. We formally analyze the complexity of the algorithms in terms of performance metrics and provide guidelines and recommendations for adapting architectures that deal with private data. Furthermore, we confirm the theoretical analysis with practical experimentation. Among other conclusions, we prove that our new algorithms speed up the processing of convolutional layers compared to the existing proposals.

摘要

心血管疾病在医疗保健系统中占据了相当大的比例。这些病症的隐匿性需要能够实现远程监测和跟踪的解决方案。深度学习(DL)已在许多领域成为一种解决方案,在医疗保健领域,也存在多个用于图像增强和院外健康监测的成功应用。然而,计算需求以及对大规模数据集的要求限制了深度学习的应用。因此,我们常常将计算任务卸载到服务器基础设施上,各种机器学习即服务(MLaaS)平台也因此应运而生。这些平台能够在通常配备高性能计算服务器的云基础设施中进行繁重的计算。不幸的是,由于将敏感数据(如医疗记录或个人身份信息)发送到第三方服务器会涉及隐私和安全问题,并具有法律和伦理影响,所以技术障碍在医疗保健生态系统中依然存在。在用于改善心血管健康的医疗保健深度学习领域,同态加密(HE)是一种有前景的工具,可实现安全、私密且合法的院外健康监测。同态加密允许对加密数据进行隐私保护计算,从而保护处理后信息的隐私性。高效的同态加密需要进行结构优化,以执行内层的复杂计算。一种这样的优化是打包同态加密(PHE),它在单个密文上对多个元素进行编码,允许高效的单指令多数据(SIMD)操作。然而,在深度学习电路中使用打包同态加密并非易事,它需要新的算法和数据编码,而现有文献尚未充分解决这些问题。为了填补这一空白,在这项工作中,我们详细阐述了使深度学习层的线性代数运算适应打包同态加密的新颖算法。具体而言,我们聚焦于卷积神经网络。我们提供了对不同算法以及高效的层间数据格式转换机制的详细描述和见解。我们从性能指标方面正式分析了算法的复杂度,并为适应处理私有数据的架构提供了指导方针和建议。此外,我们通过实际实验证实了理论分析。在其他结论中,我们证明了与现有方案相比,我们的新算法加快了卷积层的处理速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd09/10175772/33addc7639e9/fcvm-10-1117360-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验