Suppr超能文献

超分子络合增强聚合物受阻堆积:用于提高配位纳米笼混合基质膜渗透选择性的可控双孔隙率

Supramolecular Complexation Reinforced Polymer Frustrated Packing: Controllable Dual Porosity for Improved Permselectivity of Coordination Nanocage Mixed Matrix Membranes.

作者信息

Liu Yuan, Xue Binghui, Chen Jiadong, Lai Yuyan, Cai Linkun, Yin Panchao

机构信息

State Key Laboratory of Luminescent Materials and Devices & School of Molecular Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China.

出版信息

Small. 2024 Sep;20(38):e2400605. doi: 10.1002/smll.202400605. Epub 2024 May 25.

Abstract

The developments of mixed matrix membranes (MMMs) are severely hindered by the complex inter-phase interaction and the resulting poor utilization of inorganics' microporosity. Herein, a dual porosity framework is constructed in MMMs to enhance the accessibility of inorganics' microporosity to external gas molecules for the effective application of microporosity for gas separation. Nanocomposite organogels are first prepared from the supramolecular complexation of rigid polymers and 2 nm microporous coordination nanocages (CNCs). The network structures can be maintained with microporous features after solvent removal originated from the rigid nature of polymers, and the strong coordination and hydrogen bond between the two components. Moreover, the strong supramolecular attraction reinforces the frustrated packing of the rigid polymers on CNC surface, leading to polymer networks' extrinsic pores and the interconnection of CNCs' micro-cavities for the fast gas transportation. The gas permeabilities of the MMMs are 869 times for H and 1099 times for CO higher than those of pure polymers. The open metal sites from nanocage also contribute to the enhanced gas selectivity and the overall performance surpasses 2008 H/CO Robeson upper bound. The supramolecular complexation reinforced packing frustration strategy offers a simple and practical solution to achieve improved gas permselectivity in MMMs.

摘要

混合基质膜(MMMs)的发展受到复杂的界面相互作用以及由此导致的无机微孔利用率低下的严重阻碍。在此,在MMMs中构建了一种双孔隙框架,以提高无机微孔对外部气体分子的可及性,从而有效地将微孔用于气体分离。首先通过刚性聚合物与2纳米微孔配位纳米笼(CNCs)的超分子络合制备纳米复合有机凝胶。由于聚合物的刚性以及两种组分之间的强配位和氢键作用,溶剂去除后网络结构可保持微孔特征。此外,强超分子吸引力增强了刚性聚合物在CNC表面的受阻堆积,导致聚合物网络的外在孔隙以及CNCs微腔的相互连接,以实现快速气体传输。MMMs对H₂的气体渗透率比纯聚合物高869倍,对CO的气体渗透率比纯聚合物高1099倍。纳米笼中的开放金属位点也有助于提高气体选择性,整体性能超过2008年H₂/CO的罗伯逊上限。超分子络合增强受阻堆积策略为在MMMs中实现改进的气体渗透选择性提供了一种简单实用的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验