Suppr超能文献

摄入的聚苯乙烯微纳米塑料(MNPs)在体外三培养小肠上皮细胞中的摄取和转运机制。

Mechanisms of ingested polystyrene micro-nanoplastics (MNPs) uptake and translocation in an in vitro tri-culture small intestinal epithelium.

机构信息

Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA.

Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

J Hazard Mater. 2024 Jul 15;473:134706. doi: 10.1016/j.jhazmat.2024.134706. Epub 2024 May 22.

Abstract

Micro and nanoplastics (MNPs) are now ubiquitous contaminants of food and water. Many cellular and animal studies have shown that ingested MNPs can breach the intestinal barrier to reach the circulation. To date however, the cellular mechanisms involved in intestinal absorption of MNPs have not been investigated with physiologically relevant models, and thus remain unknown. We employed in vitro simulated digestion, a tri-culture small intestinal epithelium model, and a panel of inhibitors to assess the contributions of the possible mechanisms to absorption of 26 nm carboxylated polystyrene (PS26C) MNPs. Inhibition of ATP synthesis reduced translocation by only 35 %, suggesting uptake by both active endocytic pathways and passive diffusion. Translocation was also decreased by inhibition of dynamin and clathrin, suggesting involvement of clathrin mediated endocytosis (CME) and fast endophilin-mediated endocytosis (FEME). Inhibition of actin polymerization also significantly reduced translocation, suggesting involvement of macropinocytosis or phagocytosis. However, inhibition of the Na-H exchanger had no effect on translocation, thus ruling out macropinocytosis. Together these results suggest uptake by passive diffusion as well as by active phagocytosis, CME, and FEME pathways. Further studies are needed to assess uptake mechanisms for other environmentally relevant MNPs as a function of polymer, surface chemistry, and size.

摘要

微塑料和纳米塑料(MNPs)现已成为食品和水中普遍存在的污染物。许多细胞和动物研究表明,摄入的 MNPs 可以穿透肠道屏障进入循环系统。然而,迄今为止,尚未使用与生理相关的模型研究 MNPs 肠道吸收涉及的细胞机制,因此这些机制仍不清楚。我们采用体外模拟消化、三培养小肠上皮细胞模型以及一系列抑制剂来评估可能的机制对 26nm 羧基化聚苯乙烯(PS26C)MNPs 吸收的贡献。抑制 ATP 合成仅减少了 35%的易位,这表明 MNPs 的摄取既可以通过主动胞吞途径,也可以通过被动扩散来实现。抑制动力蛋白和网格蛋白也降低了易位,这表明网格蛋白介导的内吞作用(CME)和快速内吞蛋白介导的内吞作用(FEME)的参与。肌动蛋白聚合的抑制也显著降低了易位,这表明参与巨胞饮或吞噬作用。然而,Na-H 交换体的抑制对易位没有影响,因此排除了巨胞饮作用。这些结果表明 MNPs 的摄取既可以通过被动扩散,也可以通过主动吞噬作用、CME 和 FEME 途径来实现。需要进一步的研究来评估其他与环境相关的 MNPs 的摄取机制,包括聚合物、表面化学和尺寸的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验