Suppr超能文献

一种用于预测切除后远端胆管癌复发的机器学习预测模型:使用人工智能开发和验证预测模型。

A machine learning predictive model for recurrence of resected distal cholangiocarcinoma: Development and validation of predictive model using artificial intelligence.

机构信息

Hepato Pancreato Biliary Division, Hospital Del Mar, Universitat Pompeu Fabra, Barcelona, Spain.

Department of Surgery, Rigshospitalet, University of Copenhagen, Denmark.

出版信息

Eur J Surg Oncol. 2024 Jul;50(7):108375. doi: 10.1016/j.ejso.2024.108375. Epub 2024 May 9.

Abstract

INTRODUCTION

Distal Cholangiocarcinoma (dCCA) represents a challenge in hepatobiliary oncology, that requires nuanced post-resection prognostic modeling. Conventional staging criteria may oversimplify dCCA complexities, prompting the exploration of novel prognostic factors and methodologies, including machine learning algorithms. This study aims to develop a machine learning predictive model for recurrence after resected dCCA.

MATERIAL AND METHODS

This retrospective multicentric observational study included patients with dCCA from 13 international centers who underwent curative pancreaticoduodenectomy (PD). A LASSO-regularized Cox regression model was used to feature selection, examine the path of the coefficient and create a model to predict recurrence. Internal and external validation and model performance were assessed using the C-index score. Additionally, a web application was developed to enhance the clinical use of the algorithm.

RESULTS

Among 654 patients, LNR (Lymph Node Ratio) 15, neural invasion, N stage, surgical radicality, and differentiation grade emerged as significant predictors of disease-free survival (DFS). The model showed the best discrimination capacity with a C-index value of 0.8 (CI 95 %, 0.77%-0.86 %) and highlighted LNR15 as the most influential factor. Internal and external validations showed the model's robustness and discriminative ability with an Area Under the Curve of 92.4 % (95 % CI, 88.2%-94.4 %) and 91.5 % (95 % CI, 88.4%-93.5 %), respectively. The predictive model is available at https://imim.shinyapps.io/LassoCholangioca/.

CONCLUSIONS

This study pioneers the integration of machine learning into prognostic modeling for dCCA, yielding a robust predictive model for DFS following PD. The tool can provide information to both patients and healthcare providers, enhancing tailored treatments and follow-up.

摘要

简介

远端胆管癌(dCCA)是肝胆肿瘤学的一个挑战,需要细致的术后预后建模。传统的分期标准可能过于简化了 dCCA 的复杂性,促使人们探索新的预后因素和方法,包括机器学习算法。本研究旨在开发一种用于预测接受胰十二指肠切除术(PD)切除后的 dCCA 复发的机器学习预测模型。

材料与方法

这是一项回顾性多中心观察性研究,纳入了来自 13 个国际中心的接受根治性 PD 的 dCCA 患者。使用 LASSO-正则化 Cox 回归模型进行特征选择、检查系数路径并创建预测复发的模型。使用 C 指数评分评估内部和外部验证以及模型性能。此外,还开发了一个网络应用程序来增强算法的临床应用。

结果

在 654 例患者中,淋巴结比率(LNR)15、神经侵犯、N 分期、手术根治性和分化程度是无病生存(DFS)的显著预测因素。该模型的 C 指数值为 0.8(95%CI,0.77%-0.86%),具有最佳的区分能力,突出了 LNR15 是最具影响力的因素。内部和外部验证表明,该模型具有稳健性和区分能力,曲线下面积分别为 92.4%(95%CI,88.2%-94.4%)和 91.5%(95%CI,88.4%-93.5%)。该预测模型可在 https://imim.shinyapps.io/LassoCholangioca/ 上获得。

结论

本研究率先将机器学习纳入 dCCA 的预后建模中,为 PD 后 DFS 生成了一个稳健的预测模型。该工具可以为患者和医疗保健提供者提供信息,增强个性化治疗和随访。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验