Suppr超能文献

新型药物研发:通过机器学习和网络药理学推进阿尔茨海默病治疗。

Novel drug discovery: Advancing Alzheimer's therapy through machine learning and network pharmacology.

机构信息

Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.

Center of Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.

出版信息

Eur J Pharmacol. 2024 Aug 5;976:176661. doi: 10.1016/j.ejphar.2024.176661. Epub 2024 May 23.

Abstract

Alzheimer's disease (AD), marked by tau tangles and amyloid-beta plaques, leads to cognitive decline. Despite extensive research, its complex etiology remains elusive, necessitating new treatments. This study utilized machine learning (ML) to analyze compounds with neuroprotective potential. This approach exposed the disease's complexity and identified important proteins, namely MTOR and BCL2, as central to the pathogenic network of AD. MTOR regulates neuronal autophagy and survival, whereas BCL2 regulates apoptosis, both of which are disrupted in AD. The identified compounds, including Armepavine, Oprea1_264702,1-cyclopropyl-7-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid,(2S)-4'-Hydroxy-5,7,3'-trimethoxyflavan,Oprea1_130514,Sativanone,5-hydroxy-7,8-dimethoxyflavanone,7,4'-Dihydroxy-8,3'-dimethoxyflavanone,N,1-dicyclopropyl-6,Difluoro-Methoxy-Gatifloxacin,6,8-difluoro-1-(2-fluoroethyl),1-ethyl-6-fluoro-7-(4-methylpiperidin-1-yl),Avicenol C, demonstrated potential modulatory effects on these proteins. The potential for synergistic effects of these drugs in treating AD has been revealed via network pharmacology. By targeting numerous proteins at once, these chemicals may provide a more comprehensive therapeutic approach, addressing many aspects of AD's complex pathophysiology. A Molecular docking, dynamic simulation, and Principle Component Analysis have confirmed these drugs' efficacy by establishing substantial binding affinities and interactions with important proteins such as MTOR and BCL2. This evidence implies that various compounds may interact within the AD pathological framework, providing a sophisticated and multifaceted therapy strategy. In conclusion, our study establishes a solid foundation for the use of these drugs in AD therapy. Thus current study highlights the possibility of multi-targeted, synergistic therapeutic approaches in addressing the complex pathophysiology of AD by integrating machine learning, network pharmacology, and molecular docking simulations. This holistic technique not only advances drug development but also opens up new avenues for developing more effective treatments for this difficult and widespread disease.

摘要

阿尔茨海默病(AD)以tau 缠结和淀粉样β斑块为特征,导致认知能力下降。尽管进行了广泛的研究,但它的复杂病因仍然难以捉摸,需要新的治疗方法。本研究利用机器学习(ML)分析具有神经保护潜力的化合物。这种方法揭示了疾病的复杂性,并确定了重要的蛋白质,即 MTOR 和 BCL2,它们是 AD 致病网络的核心。MTOR 调节神经元自噬和存活,而 BCL2 调节细胞凋亡,这两者在 AD 中都受到干扰。鉴定出的化合物,包括 Armepavine、Oprea1_264702、1-环丙基-7-氟-8-甲氧基-4-氧代喹啉-3-羧酸、(2S)-4'-羟基-5、7、3'-三甲氧基黄酮、Oprea1_130514、Sativanone、5-羟基-7、8-二甲氧基黄烷酮、7、4'-二羟基-8、3'-二甲氧基黄烷酮、N、1-二环丙基-6、二氟-甲氧基-加替沙星、6、8-二氟-1-(2-氟乙基)、1-乙基-6-氟-7-(4-甲基哌啶-1-基)、Avicenol C,对这些蛋白质表现出潜在的调节作用。通过网络药理学揭示了这些药物在治疗 AD 方面具有协同作用的潜力。这些化学物质可以同时针对许多蛋白质,为 AD 的复杂病理生理学提供更全面的治疗方法。分子对接、动态模拟和主成分分析通过建立与 MTOR 和 BCL2 等重要蛋白质的大量结合亲和力和相互作用,证实了这些药物的疗效。这一证据表明,各种化合物可能在 AD 病理框架内相互作用,提供一种复杂而多方面的治疗策略。总之,我们的研究为这些药物在 AD 治疗中的应用奠定了坚实的基础。因此,本研究通过整合机器学习、网络药理学和分子对接模拟,为多靶点、协同治疗方法提供了可能性,以解决 AD 的复杂病理生理学。这种整体技术不仅推进了药物开发,也为开发更有效的治疗方法开辟了新途径,以应对这种困难和广泛存在的疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验