Suppr超能文献

用计算代谢组学描绘大麻植物的化学空间。

Charting the Cannabis plant chemical space with computational metabolomics.

机构信息

Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.

Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa.

出版信息

Metabolomics. 2024 May 25;20(3):62. doi: 10.1007/s11306-024-02125-y.

Abstract

INTRODUCTION

The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant.

OBJECTIVES

Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids.

METHODS

Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC).

RESULTS

The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles.

CONCLUSION

These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.

摘要

简介

大麻的化学分类通常仅限于大麻素含量,而大麻则包含多种化学类别,在其所有品种中的丰度都有所不同。因此,忽视大麻品种中的其他化学类别会导致对可能导致化学复杂性和植物药用品质的元素的理解受到限制和偏见。

目的

因此,在本文中,我们报告了一项计算代谢组学研究,以阐明大麻代谢图谱超越大麻素。

方法

使用基于质谱的计算工具来挖掘和评估两种大麻品种:迷幻致幻剂(AMNH)和皇家荷兰奶酪(RDC)的甲醇叶和花提取物。

结果

结果显示存在不同的化学化合物类别,包括大麻素,但扩展到类黄酮和磷脂,在不同的品种植物组织中有不同的分布,其中苯丙烷超类在叶子中比在花中更为丰富。因此,这两个品种根据其植物组织的整体化学含量进行了区分,其中 AMNH 在类黄酮含量方面更为突出,而 RDC 在类脂样分子方面更为突出。此外,计算机分子对接研究结合生物测定研究表明,这两个品种可能具有不同的抗癌特性,这是由阐明的化学特征所致。

结论

这些发现突出了大麻品种中除大麻素之外的独特化学特征。大麻代谢组学图谱的这一新映射为植物生物化学提供了可行的见解,并证明了选择某些品种用于药用的合理性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e693/11127828/2a89c3f475dc/11306_2024_2125_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验