Suppr超能文献

紫外光对 hERG 钾通道 PAS 结构域的光抑制作用加速了通道关闭。

Photoinhibition of the hERG potassium channel PAS domain by ultraviolet light speeds channel closing.

机构信息

Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.

Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.

出版信息

Biophys J. 2024 Aug 20;123(16):2392-2405. doi: 10.1016/j.bpj.2024.05.024. Epub 2024 May 24.

Abstract

hERG potassium channels are critical for cardiac excitability. hERG channels have a Per-Arnt-Sim (PAS) domain at their N-terminus, and here, we examined the mechanism for PAS domain regulation of channel opening and closing (gating). We used TAG codon suppression to incorporate the noncanonical amino acid 4-benzoyl-L-phenylalanine (BZF), which is capable of forming covalent cross-links after photoactivation by ultraviolet (UV) light, at three locations (G47, F48, and E50) in the PAS domain. We found that hERG-G47BZF channels had faster closing (deactivation) when irradiated in the open state (at 0 mV) but showed no measurable changes when irradiated in the closed state (at -100 mV). hERG-F48BZF channels had slower activation, faster deactivation, and a marked rightward shift in the voltage dependence of activation when irradiated in the open (at 0 mV) or closed (at -100 mV) state. hERG-E50BZF channels had no measurable changes when irradiated in the open state (at 0 mV) but had slower activation, faster deactivation, and a rightward shift in the voltage dependence of activation when irradiated in the closed state (at -100mV), indicating that hERG-E50BZF had a state-dependent difference in UV photoactivation, which we interpret to mean that PAS underwent molecular motions between the open and closed states. Moreover, we propose that UV-dependent biophysical changes in hERG-G47BZF, F48BZF, and E50BZF were the direct result of photochemical cross-linking that reduced dynamic motions in the PAS domain and broadly stabilized the closed state relative to the open state of the channel.

摘要

hERG 钾通道对于心脏兴奋性至关重要。hERG 通道在其 N 端具有一个 Per-Arnt-Sim(PAS)结构域,在此,我们研究了 PAS 结构域调节通道开放和关闭(门控)的机制。我们使用 TAG 密码子抑制技术将非天然氨基酸 4-苯甲酰-L-苯丙氨酸(BZF)引入 PAS 结构域的三个位置(G47、F48 和 E50),BZF 在经紫外线(UV)光光激活后能够形成共价交联。我们发现,当 hERG-G47BZF 通道在开放状态(在 0 mV 时)被照射时,其关闭(失活)更快,但当在关闭状态(在-100 mV 时)被照射时,没有可测量的变化。hERG-F48BZF 通道的激活速度较慢,失活速度较快,当在开放(在 0 mV 时)或关闭(在-100 mV 时)状态下被照射时,激活的电压依赖性有明显的右移。hERG-E50BZF 通道在开放状态(在 0 mV 时)被照射时没有可测量的变化,但在关闭状态(在-100 mV 时)被照射时激活速度较慢,失活速度较快,激活的电压依赖性向右移动,表明 hERG-E50BZF 在 UV 光激活方面存在状态依赖性差异,我们将其解释为 PAS 在开放和关闭状态之间发生了分子运动。此外,我们提出 hERG-G47BZF、F48BZF 和 E50BZF 的 UV 依赖性生物物理变化是 PAS 结构域中光化学交联的直接结果,该交联减少了 PAS 结构域的动态运动,并相对于通道的开放状态广泛稳定了关闭状态。

相似文献

1
Photoinhibition of the hERG potassium channel PAS domain by ultraviolet light speeds channel closing.
Biophys J. 2024 Aug 20;123(16):2392-2405. doi: 10.1016/j.bpj.2024.05.024. Epub 2024 May 24.
3
An intracellular hydrophobic nexus critical for hERG1 channel slow deactivation.
Biophys J. 2024 Jul 16;123(14):2024-2037. doi: 10.1016/j.bpj.2024.01.010. Epub 2024 Jan 12.
5
Harnessing AlphaFold to reveal hERG channel conformational state secrets.
Elife. 2025 Jul 14;13:RP104901. doi: 10.7554/eLife.104901.
8
Sertindole for schizophrenia.
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.
10
Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants.
Nature. 2024 Aug;632(8024):451-459. doi: 10.1038/s41586-024-07743-z. Epub 2024 Jul 31.

引用本文的文献

2
Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology.
Chem Rev. 2024 Oct 23;124(20):11523-11543. doi: 10.1021/acs.chemrev.4c00306. Epub 2024 Aug 29.
3
Locking hERG channels into place: Using photoreactive unnatural amino acids to study voltage gating.
Biophys J. 2024 Aug 20;123(16):2358-2359. doi: 10.1016/j.bpj.2024.07.021. Epub 2024 Jul 20.

本文引用的文献

1
A hydrophobic nexus at the heart of hERG K channel gating.
Biophys J. 2024 Jul 16;123(14):1907-1909. doi: 10.1016/j.bpj.2024.03.016. Epub 2024 Mar 12.
2
An intracellular hydrophobic nexus critical for hERG1 channel slow deactivation.
Biophys J. 2024 Jul 16;123(14):2024-2037. doi: 10.1016/j.bpj.2024.01.010. Epub 2024 Jan 12.
3
Voltage-sensor movements in the Eag Kv channel under an applied electric field.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2214151119. doi: 10.1073/pnas.2214151119. Epub 2022 Nov 7.
4
Crosslinking glutamate receptor ion channels.
Methods Enzymol. 2021;652:161-192. doi: 10.1016/bs.mie.2021.03.005. Epub 2021 Mar 31.
5
Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains.
Channels (Austin). 2020 Dec;14(1):294-309. doi: 10.1080/19336950.2020.1816107.
6
The hERG potassium channel intrinsic ligand regulates N- and C-terminal interactions and channel closure.
J Gen Physiol. 2019 Apr 1;151(4):478-488. doi: 10.1085/jgp.201812129. Epub 2018 Nov 13.
7
Dynamic rearrangement of the intrinsic ligand regulates KCNH potassium channels.
J Gen Physiol. 2018 Apr 2;150(4):625-635. doi: 10.1085/jgp.201711989. Epub 2018 Mar 22.
8
Structural insights into the mechanisms of CNBD channel function.
J Gen Physiol. 2018 Feb 5;150(2):225-244. doi: 10.1085/jgp.201711898. Epub 2017 Dec 12.
9
Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels.
Elife. 2017 Apr 27;6:e26355. doi: 10.7554/eLife.26355.
10
Cryo-EM Structure of the Open Human Ether-à-go-go-Related K Channel hERG.
Cell. 2017 Apr 20;169(3):422-430.e10. doi: 10.1016/j.cell.2017.03.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验