Duran-Morales Scarleth, Reyes-Lizana Rachel, Fernández German, Loncon-Pavez Macarena, Duarte Yorley, Marquez-Miranda Valeria, Diaz-Franulic Ignacio
Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago 8370146, Chile.
Int J Mol Sci. 2025 Jul 23;26(15):7121. doi: 10.3390/ijms26157121.
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to OSCA gating remain unresolved. Here, we combined the genetic encoding of the photoactivatable crosslinker p-benzoyl-L-phenylalanine (BzF) with functional Ca imaging and molecular dynamics simulations to dissect the roles of specific residues in OSCA1.2 gating. Targeted UV-induced crosslinking at positions F22, H236, and R343 locked the channel in a non-conducting state, indicating their functional relevance. Structural analysis revealed that these residues are strategically positioned: F22 interacts with lipids near the activation gate, H236 lines the lipid-filled cavity, and R343 forms cross-subunit contacts. Together, these results support a model in which mechanical gating involves a distributed network of residues across multiple channel regions, allosterically converging on the activation gate. This study expands our understanding of mechanotransduction by revealing how distant structural elements contribute to force sensing in OSCA channels.
诸如OSCA1.2这样的机械敏感离子通道使细胞能够通过将膜张力转化为离子通量来感知并响应机械力。虽然亚基间裂隙中的脂质重排被认为是一种关键的激活机制,但其他结构域对OSCA门控的贡献仍未得到解决。在这里,我们将光激活交联剂对苯甲酰-L-苯丙氨酸(BzF)的基因编码与功能性钙成像和分子动力学模拟相结合,以剖析OSCA1.2门控中特定残基的作用。在F22、H236和R343位置进行靶向紫外线诱导交联会使通道锁定在非导通状态,表明它们的功能相关性。结构分析表明,这些残基的位置具有策略性:F22与激活门附近的脂质相互作用,H236排列在充满脂质的腔内,R343形成跨亚基接触。总之,这些结果支持了一个模型,即机械门控涉及多个通道区域中残基的分布式网络,通过变构作用汇聚在激活门上。这项研究通过揭示远距离结构元件如何有助于OSCA通道中的力传感,扩展了我们对机械转导的理解。