Suppr超能文献

基于机器学习方法的中国固体废物处理公司的 ESG 类型识别。

Identifying ESG types of Chinese solid waste disposal companies based on machine learning methods.

机构信息

School of Management, Hefei University of Technology, Hefei, 230009, China; Philosophy and Social Sciences Laboratory of Data Science and Smart Society Governance, Ministry of Education, Hefei, Anhui, China.

School of Management, Hefei University of Technology, Hefei, 230009, China.

出版信息

J Environ Manage. 2024 Jun;360:121235. doi: 10.1016/j.jenvman.2024.121235. Epub 2024 May 25.

Abstract

In the context of China's efforts to combat climate change and promote sustainable development, the solid waste treatment industry's environmental, social, and corporate governance (ESG) performance is receiving significant attention. To comprehensively assess the ESG performance of the solid waste treatment industry and identify company types, this study constructs a targeted ESG evaluation index system based on existing literature, SASB industry standards, and company reports and utilizes a random forest approach combined with K-means clustering to determine indicator weights. Based on this index system, the paper evaluates the ESG performance of 71 solid waste disposal companies (SWDCs) from 2013 to 2021 and identifies their ESG types from static and dynamic perspectives. In the static view, company types are determined based on annual ESG performance, while the dynamic view considers time-series changes to observe the evolution of company ESG types. The results show that the overall ESG performance of SWDCs falls within the 2-8-point range, indicating a noticeable high-low imbalance. Key initiatives to improve ESG performance in this industry include enhancing waste management measures, developing emergency plans, and reinforcing ESG disclosure. From a static perspective, this paper can identify companies into three categories: delayed development, single-wheel-driven, and coordinated development. Finally, from a dynamic perspective considering the time factor, companies are further subdivided into five types: continual leading, growth catch-up, slow progress, fluctuating change, and retrogressive inertia. This study not only provides targeted recommendations for different types of ESG companies but also helps various sectors of society better understand the ESG conditions of this high environmental risk industry, thereby enhancing the regulation and support for its sustainable development.

摘要

在中国应对气候变化和推动可持续发展的背景下,固废处理行业的环境、社会和公司治理(ESG)绩效受到了广泛关注。为了全面评估固废处理行业的 ESG 绩效并识别公司类型,本研究基于现有文献、SASB 行业标准和公司报告,构建了有针对性的 ESG 评价指标体系,并采用随机森林法结合 K-均值聚类法确定指标权重。基于该指标体系,本文评估了 2013 年至 2021 年 71 家固废处理公司(SWDC)的 ESG 绩效,并从静态和动态视角识别其 ESG 类型。在静态视角下,根据年度 ESG 绩效确定公司类型,而动态视角则考虑时间序列变化,观察公司 ESG 类型的演变。结果表明,SWDC 的整体 ESG 绩效处于 2-8 分区间,表现出明显的高低不平衡。提高该行业 ESG 绩效的关键举措包括加强废物管理措施、制定应急预案和加强 ESG 披露。从静态视角来看,本文可以将公司分为三类:发展滞后型、单轮驱动型和协调发展型。最后,从考虑时间因素的动态视角来看,公司进一步细分为五类:持续领先型、增长追赶型、缓慢进步型、波动变化型和倒退惯性型。本研究不仅为不同类型的 ESG 公司提供了有针对性的建议,还帮助社会各界更好地了解这个高环境风险行业的 ESG 状况,从而加强对其可持续发展的监管和支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验