The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
Vrije Universiteit, Department of Physics and Astronomy, Faculty of Sciences, De Boelelaan 1081, 1081HV Amsterdam, the Netherlands.
J Mol Biol. 2024 Aug 15;436(16):168625. doi: 10.1016/j.jmb.2024.168625. Epub 2024 May 24.
In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
在这项研究中,我们通过稳态和时间分辨光谱技术系统地研究了在不同溶剂中受光激发的echinenone 的振动特性和处于红色和橙色状态的 Orange Carotenoid Protein(OCP)。时间分辨实验采用瞬态吸收(TA)和飞秒受激拉曼光谱(FSRS)两种技术,揭示了 OCP 光激活过程中的不同状态。时间分辨研究表明,在 OCP 中类胡萝卜素演化的最初 140fs 内,位于 S 态之上的激发态具有振动特征,OCP 中的 echinenone 处于松弛的 S 态时没有振动特征,而 OCP 中的基态(GS)具有更强的激发态特征。OCP 和溶剂中 S 态振动种群特征的差异归因于 OCP 中 echinenone 的独特构象和酮基形成的氢键,形成了短暂的分子内电荷转移(ICT)态。OCP 中热 GS 的振动动力学表现出比溶剂中 echinenone 更明显的基态 CC 振动红移,这表明 GS 处于一种异常热的形式。该研究提出了 OCP 光激活机制的假说,强调了纵向伸缩模式中高振动激发水平作为驱动力的重要性。总之,振动特征的比较揭示了 OCP 中能量耗散的独特动力学,为光激活机制提供了深入的了解,并强调了蛋白质环境对类胡萝卜素行为的影响。该研究强调了在理解 OCP 早期光激活过程中复杂机制时,振动分析的重要性。