Yang Guangyao, Peng Weiliang, Chen Zhipeng, Li Shaobo, Han Qiying, Hu Renzong, Yuan Bin
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China.
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, Guangzhou 510640, P.R. China.
ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28578-28589. doi: 10.1021/acsami.4c04157. Epub 2024 May 26.
Nickel-molybdenum-boron (Ni-Mo-B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni-Mo alloy substrates that provide stable adhesion to catalysts, ensuring the long-term performance of bifunctional self-supporting electrodes at a high current density. Herein, a porous Ni-Mo alloy substrate was effectively obtained by a cost-effective dealloying process on a commercial Ni-Mo alloy with high-energy crystal planes. Subsequently, the MoNiB/NiB bifunctional catalyst was in situ synthesized on this substrate via boriding heat treatment, resulting in outstanding catalytic activity and stability. Density functional theory (DFT) calculations reveal that the abundant biphasic interfaces and surface-reconstructed sites of the MoNiB/NiB catalyst can decrease the energy barriers for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Thus, the designed self-supporting electrodes show bifunctional catalytic activity with overpotentials of 151 mV for HER and 260 mV for OER at a current density of 10 mA cm. Markedly, the assembled water electrolyzer can be driven up to 10 mA cm at 1.64 V and maintain catalytic activity at a high current density of 1000 mA cm for 100 h. The new strategy is expected to provide a low-cost scheme for designing self-supporting bifunctional electrodes with high activity and excellent stability and contribute to the development of hydrogen energy technology.
具有双相界面的镍-钼-硼(Ni-Mo-B)基催化剂在碱性水分解的双功能电催化活性方面具有高度优势。然而,获得对催化剂具有稳定附着力的多孔Ni-Mo合金基底仍然是一个持续的挑战,这对于双功能自支撑电极在高电流密度下的长期性能至关重要。在此,通过对具有高能晶面的商用Ni-Mo合金进行经济高效的脱合金工艺,有效地获得了多孔Ni-Mo合金基底。随后,通过硼化热处理在该基底上原位合成了MoNiB/NiB双功能催化剂,从而产生了出色的催化活性和稳定性。密度泛函理论(DFT)计算表明,MoNiB/NiB催化剂丰富的双相界面和表面重构位点可分别降低析氢反应(HER)和析氧反应(OER)的能垒。因此,所设计的自支撑电极在电流密度为10 mA cm时表现出双功能催化活性,HER的过电位为151 mV。显著地,组装的水电解槽在1.64 V时可驱动至10 mA cm,并在1000 mA cm的高电流密度下保持催化活性100小时。该新策略有望为设计具有高活性和优异稳定性的自支撑双功能电极提供低成本方案,并有助于氢能技术的发展。