Suppr超能文献

膜突蛋白控制细胞间融合和破骨细胞功能。

Moesin controls cell-cell fusion and osteoclast function.

作者信息

Dufrancais Ophélie, Verdys Perrine, Plozza Marianna, Métais Arnaud, Juzans Marie, Sanchez Thibaut, Bergert Martin, Halper Julia, Panebianco Christopher J, Mascarau Rémi, Gence Rémi, Arnaud Gaëlle, Neji Myriam Ben, Maridonneau-Parini Isabelle, Cabec Véronique Le, Boerckel Joel D, Pavlos Nathan J, Diz-Muñoz Alba, Lagarrigue Frédéric, Blin-Wakkach Claudine, Carréno Sébastien, Poincloux Renaud, Burkhardt Janis K, Raynaud-Messina Brigitte, Vérollet Christel

出版信息

bioRxiv. 2024 Aug 28:2024.05.13.593799. doi: 10.1101/2024.05.13.593799.

Abstract

Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.

摘要

细胞-细胞融合是一个进化上保守的过程,对许多功能至关重要,包括受精以及胎盘、肌肉和破骨细胞的形成,破骨细胞是一种具有独特骨吸收能力的多核细胞。破骨细胞多核化的机制涉及肌动蛋白细胞骨架与质膜之间的动态相互作用,目前对其了解仍很少。在这里,我们发现埃兹蛋白/根蛋白/膜突蛋白(ERM)家族的细胞骨架连接蛋白成员膜突蛋白在破骨细胞成熟过程中被激活,并且在破骨细胞融合和功能中发挥重要作用。在小鼠和人类破骨细胞前体中,膜突蛋白抑制有利于它们融合成多核破骨细胞。因此,我们证明膜突蛋白缺失会减少膜与皮质的附着,并增强隧道纳米管(TNTs)的形成,TNTs是基于丝状肌动蛋白的细胞间桥,我们在此揭示其可触发细胞-细胞融合。膜突蛋白还控制HIV-1和炎症诱导的细胞融合。此外,膜突蛋白通过β3整合素/RhoA/SLK途径调节封闭区的形成,封闭区是决定破骨细胞骨吸收区域的粘附结构,从而控制骨降解。支持我们结果的是,膜突蛋白缺陷小鼠的小梁骨密度降低,破骨细胞丰度和活性增加。这些发现有助于更好地理解细胞-细胞融合和破骨细胞生物学的调控,为在骨疾病治疗中特异性靶向破骨细胞活性开辟了新机会。

相似文献

3
Synaptopodin is necessary for intercellular spread.突触素对于细胞间传播是必需的。
bioRxiv. 2023 Jun 26:2023.04.25.537990. doi: 10.1101/2023.04.25.537990.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验