Suppr超能文献

规划中包含什么?运用自然语言处理技术解读461份加利福尼亚城市总体规划。

What Is in a Plan? Using Natural Language Processing to Read 461 California City General Plans.

作者信息

Brinkley Catherine, Stahmer Carl

机构信息

University of California, Davis, Davis, CA, USA.

出版信息

J Plan Educ Res. 2024 Jun;44(2):632-648. doi: 10.1177/0739456x21995890. Epub 2021 Mar 9.

Abstract

Land-use control is local and highly varied. State agencies struggle to assess plan contents. Similarly, advocacy groups and planning researchers wrestle with the length of planning documents and ability to compare across plans. The goal of this research is to (1) introduce Natural Language Processing techniques that can automate qualitative coding in planning research and (2) provide policy-relevant exploratory findings. We assembled a database of 461 California city-level General Plans, extracted the text, and used topic modeling to identify areas of emphasis (clusters of co-occurring words). We find that California city general plans address more than sixty topics, including greenhouse gas mitigation and Climate Action Planning. Through spatializing results, we find that a quarter of the topics in plans are regionally specific. We also quantify the rift and convergence of planning topics. The topics focused on housing have very little overlap with other planning topics. This is likely a factor of state requirements to update and evolve the Housing Elements every five years, but not other aspects of General Plans. This finding has policy implications as housing topics evolve away from other emphasis areas such as transportation and economic development. Furthermore, the topic modeling approach reveals that many cities have had a focus on environmental justice through Health and Wellness Elements well before the state mandate in 2019. Our searchable state-level database of general plans is the first for California-and nationally. We provide a model for others that wish to comprehensively assess and compare plan contents using machine learning.

摘要

土地使用控制是地方性的,且差异很大。州政府机构难以评估规划内容。同样,倡导团体和规划研究人员也在为规划文件的长度以及跨规划进行比较的能力而苦恼。本研究的目标是:(1)引入能够在规划研究中实现定性编码自动化的自然语言处理技术;(2)提供与政策相关的探索性发现。我们收集了461份加利福尼亚州市级总体规划的数据库,提取了文本,并使用主题建模来确定重点领域(共现词簇)。我们发现,加利福尼亚州市级总体规划涉及六十多个主题,包括温室气体减排和气候行动计划。通过将结果空间化,我们发现规划中的四分之一主题是特定于区域的。我们还对规划主题的分歧和趋同进行了量化。专注于住房的主题与其他规划主题几乎没有重叠。这可能是因为该州要求每五年更新和完善住房要素,而总体规划的其他方面则不然。随着住房主题从交通和经济发展等其他重点领域演变,这一发现具有政策意义。此外,主题建模方法表明,早在2019年该州强制要求之前,许多城市就已通过健康与福祉要素关注环境正义。我们可搜索的州级总体规划数据库在加利福尼亚州乃至全国都是首个。我们为其他希望使用机器学习全面评估和比较规划内容的人提供了一个模型。

相似文献

2
Who is Planning for Environmental Justice, And How.谁在规划环境正义,以及如何规划。
J Am Plann Assoc. 2022 Nov 21;90:63-76. doi: 10.1080/01944363.2022.2118155.

引用本文的文献

1
Who is Planning for Environmental Justice, And How.谁在规划环境正义,以及如何规划。
J Am Plann Assoc. 2022 Nov 21;90:63-76. doi: 10.1080/01944363.2022.2118155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验