Zheng Jianxiang, Du Mengxia, Xiao Zuxin, Zhu Xiuli
School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China.
Changan Automobile Global Research and Development Center, Avita Technology (Chongqing) Co., Ltd, ChongQing 400000, China.
ACS Omega. 2024 May 10;9(20):22051-22064. doi: 10.1021/acsomega.4c00285. eCollection 2024 May 21.
In this study, simulations were carried out to study the combustion characteristics within a 600 MW W-shaped pulverized coal boiler under O/N and O/CO atmospheres. The objective of this work is to develop and validate a novel model for pulverized coal combustion under O-enriched conditions, specifically optimized for the O/CO atmosphere. The innovation in this model lies in the precise calibration of kinetic constants for soot nucleation and surface growth rates, enabling a more accurate simulation of flame characteristics (such as the flame temperature and soot volume fraction) under O-enriched combustion conditions. The study reveals that an increase in the O concentration significantly reduces the combustion flame height and flame penetration depth, thereby enhancing the local temperature inside the furnace. Moreover, at higher oxygen concentrations, the high levels of OH and O accelerate the oxidation reaction rate and shift the high-temperature zone upward. Subsequently, the maximum value of the nucleation rate increases. Therefore, compared to those of the O/N atmospheres, in the O/CO atmospheres, the peak volume fractions of soot decreased by 0.72, 25.5, and 15.9% for oxygen contents of 21, 30, and 40%, respectively. This demonstrates the impact of the oxidizing environment on soot production. Therefore, this study delves into the effects of oxygen concentration and temperature on soot formation and provides a new model for better predicting and optimizing combustion processes in industrial applications.
在本研究中,进行了模拟以研究600兆瓦W型煤粉锅炉在O/N和O/CO气氛下的燃烧特性。这项工作的目的是开发并验证一种用于富氧条件下煤粉燃烧的新型模型,该模型针对O/CO气氛进行了专门优化。该模型的创新之处在于对烟灰成核和表面生长速率的动力学常数进行了精确校准,从而能够在富氧燃烧条件下更准确地模拟火焰特性(如火焰温度和烟灰体积分数)。研究表明,O浓度的增加会显著降低燃烧火焰高度和火焰穿透深度,从而提高炉膛内的局部温度。此外,在较高的氧气浓度下,高浓度的OH和O会加速氧化反应速率并使高温区向上移动。随后,成核速率的最大值增加。因此,与O/N气氛相比,在O/CO气氛中,对于21%、30%和40%的氧气含量,烟灰的峰值体积分数分别降低了0.72%、25.5%和15.9%。这证明了氧化环境对烟灰生成的影响。因此,本研究深入探讨了氧气浓度和温度对烟灰形成的影响,并提供了一个新模型,以便更好地预测和优化工业应用中的燃烧过程。