Suppr超能文献

基于静息磁心动图对重度冠状动脉狭窄的准确诊断:一项前瞻性、单中心横断面分析。

Accurate diagnosis of severe coronary stenosis based on resting magnetocardiography: a prospective, single-center, cross-sectional analysis.

作者信息

Cui Jian-Guo, Tian Feng, Miao Yu-Hao, Jin Qin-Hua, Shi Ya-Jun, Li Li, Shen Meng-Jun, Xie Xiao-Ming, Zhang Shu-Lin, Chen Yun-Dai

机构信息

School of Medicine, Nankai University, Tianjin, China.

Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.

出版信息

J Geriatr Cardiol. 2024 Apr 28;21(4):407-420. doi: 10.26599/1671-5411.2024.04.006.

Abstract

OBJECTIVE

To evaluate the role of resting magnetocardiography in identifying severe coronary artery stenosis in patients with suspected coronary artery disease.

METHODS

A total of 513 patients with angina symptoms were included and divided into two groups based on the extent of coronary artery disease determined by angiography: the non-severe coronary stenosis group (< 70% stenosis) and the severe coronary stenosis group (≥ 70% stenosis). The diagnostic model was constructed using magnetic field map (MFM) parameters, either individually or in combination with clinical indicators. The performance of the models was evaluated using receiver operating characteristic curves, accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Calibration plots and decision curve analysis were performed to investigate the clinical utility and performance of the models, respectively.

RESULTS

In the severe coronary stenosis group, QR_MCTDd, S_MDp, and TT_MAC were significantly higher than those in the non-severe coronary stenosis group (10.46 ± 10.66 5.11 ± 6.07, < 0.001; 7.2 ± 8.64 4.68 ± 6.95, = 0.003; 0.32 ± 57.29 0.26 ± 57.29, < 0.001). While, QR_MV, R_MA, and T_MA in the severe coronary stenosis group were lower (0.23 ± 0.16 0.28 ± 0.16, < 0.001; 55.06 ± 48.68 59.24 ± 53.01, < 0.001; 51.67 ± 39.32 60.45 ± 51.33, < 0.001). Seven MFM parameters were integrated into the model, resulting in an area under the curve of 0.810 (95% CI: 0.765-0.855). The sensitivity, specificity, PPV, NPV, and accuracy were 71.7%, 80.4%, 93.3%, 42.8%, and 73.5%; respectively. The combined model exhibited an area under the curve of 0.845 (95% CI: 0.798-0.892). The sensitivity, specificity, PPV, NPV, and accuracy were 84.3%, 73.8%, 92.6%, 54.6%, and 82.1%; respectively. Calibration curves demonstrated excellent agreement between the nomogram prediction and actual observation. The decision curve analysis showed that the combined model provided greater net benefit compared to the magnetocardiography model.

CONCLUSIONS

The novel quantitative MFM parameters, whether used individually or in combination with clinical indicators, have been shown to effectively predict the risk of severe coronary stenosis in patients presenting with angina-like symptoms. Magnetocardiography, an emerging non-invasive diagnostic tool, warrants further exploration for its potential in diagnosing coronary heart disease.

摘要

目的

评估静息磁心动图在识别疑似冠心病患者严重冠状动脉狭窄中的作用。

方法

纳入513例有胸痛症状的患者,根据血管造影确定的冠状动脉疾病程度分为两组:非严重冠状动脉狭窄组(狭窄<70%)和严重冠状动脉狭窄组(狭窄≥70%)。使用磁场图(MFM)参数单独或与临床指标相结合构建诊断模型。使用受试者工作特征曲线、准确性、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)评估模型的性能。分别进行校准图和决策曲线分析以研究模型的临床实用性和性能。

结果

在严重冠状动脉狭窄组中,QR_MCTDd、S_MDp和TT_MAC显著高于非严重冠状动脉狭窄组(10.46±10.66对5.11±6.07,P<0.001;7.2±8.64对4.68±6.95,P = 0.003;0.32±57.29对0.26±57.29,P<0.001)。而严重冠状动脉狭窄组的QR_MV、R_MA和T_MA较低(0.23±0.16对0.28±0.16,P<0.001;55.06±48.68对59.24±53.01,P<0.001;51.67±39.32对60.45±51.33,P<0.001)。七个MFM参数被纳入模型,曲线下面积为0.810(95%CI:0.765 - 0.855)。敏感性、特异性、PPV、NPV和准确性分别为71.7%、80.4%、93.3%、42.8%和73.5%;联合模型的曲线下面积为0.845(95%CI:0.798 - 0.892)。敏感性、特异性、PPV、NPV和准确性分别为84.3%、73.8%、92.6%、54.6%和82.1%;校准曲线显示列线图预测与实际观察之间具有良好的一致性。决策曲线分析表明,与磁心动图模型相比,联合模型提供了更大的净效益。

结论

新的定量MFM参数,无论是单独使用还是与临床指标结合使用,都已被证明能有效预测有胸痛样症状患者严重冠状动脉狭窄的风险。磁心动图作为一种新兴的非侵入性诊断工具,其在诊断冠心病方面的潜力值得进一步探索。

相似文献

3
Magnetocardiography scoring system to predict the presence of obstructive coronary artery disease.
Clin Hemorheol Microcirc. 2018;70(4):365-373. doi: 10.3233/CH-189301.
5
[Diagnostic efficiency and incremental value of myocardial blood flow quantification by CZT SPECT for patients with coronary artery disease].
Zhonghua Xin Xue Guan Bing Za Zhi. 2022 May 24;50(5):494-500. doi: 10.3760/cma.j.cn112148-20211124-01018.
6
[A study on the first-order interaction of diagnostic performance of coronary CT angiography-derived fractional flow reserve].
Zhonghua Nei Ke Za Zhi. 2023 Dec 1;62(12):1451-1457. doi: 10.3760/cma.j.cn112138-20230128-00036.

引用本文的文献

2
Advances of magnetocardiography in application of adult and fetal cardiac diseases.
Front Cardiovasc Med. 2025 Jul 16;12:1522467. doi: 10.3389/fcvm.2025.1522467. eCollection 2025.
3
New clinical application of magnetocardiography: diagnosis of left ventricular hypertrophy.
Front Cardiovasc Med. 2025 May 27;12:1577662. doi: 10.3389/fcvm.2025.1577662. eCollection 2025.

本文引用的文献

1
A generalized deep learning model for heart failure diagnosis using dynamic and static ultrasound.
J Transl Int Med. 2023 Jul 5;11(2):138-144. doi: 10.2478/jtim-2023-0088. eCollection 2023 Jun.
2
Magnetocardiography for the detection of myocardial ischemia.
Front Cardiovasc Med. 2023 Jul 7;10:1242215. doi: 10.3389/fcvm.2023.1242215. eCollection 2023.
5
Assessing heart disease using a novel magnetocardiography device.
Biomed Phys Eng Express. 2021 Feb 23;7(2). doi: 10.1088/2057-1976/abe5c5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验