Suppr超能文献

使用数据质量框架评估混合数据的数据质量。

Evaluating data quality for blended data using a data quality framework.

作者信息

Parker Jennifer D, Mirel Lisa B, Lee Phillip, Mintz Ryan, Tungate Andrew, Vaidyanathan Ambarish

机构信息

National Center for Health Statistics, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services.

National Center for Science and Engineering Statistics, National Science Foundation.

出版信息

Stat J IAOS. 2024 Mar 15;40(1):125-136. doi: 10.3233/sji-230125.

Abstract

In 2020 the U.S. Federal Committee on Statistical Methodology (FCSM) released "A Framework for Data Quality", organized by 11 dimensions of data quality grouped among three domains of quality (utility, objectivity, integrity). This paper addresses the use of the FCSM Framework for data quality assessments of blended data. The FCSM Framework applies to all types of data, however best practices for implementation have not been documented. We applied the FCSM Framework for three health-research related case studies. For each case study, assessments of data quality dimensions were performed to identify threats to quality, possible mitigations of those threats, and trade-offs among them. From these assessments the authors concluded: 1) data quality assessments are more complex in practice than anticipated and expert guidance and documentation are important; 2) each dimension may not be equally important for different data uses; 3) data quality assessments can be subjective and having a quantitative tool could help explain the results, however, quantitative assessments may be closely tied to the intended use of the dataset; 4) there are common trade-offs and mitigations for some threats to quality among dimensions. This paper is one of the first to apply the FCSM Framework to specific use-cases and illustrates a process for similar data uses.

摘要

2020年,美国联邦统计方法委员会(FCSM)发布了《数据质量框架》,该框架由数据质量的11个维度组成,分为质量的三个领域(效用、客观性、完整性)。本文论述了如何将FCSM框架用于混合数据的数据质量评估。FCSM框架适用于所有类型的数据,然而尚未记录其实施的最佳实践。我们将FCSM框架应用于三个与健康研究相关的案例研究。对于每个案例研究,都对数据质量维度进行了评估,以识别质量威胁、这些威胁的可能缓解措施以及它们之间的权衡。从这些评估中,作者得出以下结论:1)数据质量评估在实践中比预期的更复杂,专家指导和文档很重要;2)对于不同的数据用途,每个维度可能并非同等重要;3)数据质量评估可能具有主观性,拥有一个定量工具可能有助于解释结果,然而,定量评估可能与数据集的预期用途紧密相关;4)在维度之间,对于一些质量威胁存在常见的权衡和缓解措施。本文是最早将FCSM框架应用于特定用例的文章之一,并阐述了类似数据用途的流程。

相似文献

4
[Procedures and methods of benefit assessments for medicines in Germany].[德国药品效益评估的程序和方法]
Dtsch Med Wochenschr. 2008 Dec;133 Suppl 7:S225-46. doi: 10.1055/s-0028-1100954. Epub 2008 Nov 25.
7
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验